• 제목/요약/키워드: adaptive nearest neighbor

검색결과 19건 처리시간 0.023초

순차 적응 최근접 이웃을 활용한 결측값 대치법 (On the Use of Sequential Adaptive Nearest Neighbors for Missing Value Imputation)

  • 박소현;방성완;전명식
    • 응용통계연구
    • /
    • 제24권6호
    • /
    • pp.1249-1257
    • /
    • 2011
  • 비모수적 결측치 대치법인 k-최근접 이웃(k-Nearest Neighbors; KNN) 대치법을 개선한 적응 최근접 이웃(Adaptive Nearest Neighbor; ANN) 대치법과 순차 k-최근접 이웃(Sequential k-Nearest Neighbor; SKNN) 대치법의 장점들을 결합한 순차 적응 최근접 이웃(Sequential Adaptive Nearest Neighbor; SANN) 대치법을 제안하고자 한다. 이 방법은 ANN 대치법의 장점인 자료의 국소적 특징을 반영할 뿐 아니라, SKNN 대치법과 같이 결측값 대치가 이루어진 개체를 다음 결측값을 대치할 때 사용함으로써 효율성에 개선이 있을 것으로 기대한다.

랜덤 투영 앙상블 기법을 활용한 적응 최근접 이웃 판별분류기법 (Random projection ensemble adaptive nearest neighbor classification)

  • 강종경;전명식
    • 응용통계연구
    • /
    • 제34권3호
    • /
    • pp.401-410
    • /
    • 2021
  • 판별분류분석에서 널리 이용되는 k-최근접 이웃 분류 방법은 고정된 이웃의 수만을 고려하여 자료의 국소적 특징을 반영하지 못하는 한계가 있다. 이에 자료의 국소적 구조를 고려하여 이웃의 개수를 선택하는 적응 최근접이웃방법이 개발된 바 있다. 고차원 자료의 분석에 있어서는 k-최근접 이웃 분류를 사용하기 전에 랜덤 투영 기법 등을 활용하여 차원 축소를 수행하는 것이 일반적이다. 이렇게 랜덤 투영시킨 다수의 분류 결과들을 면밀히 조합하여 투표를 통해 최종 할당을 하는 기법이 최근 개발된 바 있다. 본 연구에서는 고차원 자료에서의 분석을 위해 적응 최근접이웃방법과 랜덤 투영 앙상블 기법을 조합한 새로운 판별분류 기법을 제안하였다. 제안된 방법은 기존에 개발된 방법에 비해 분류 정확성 측면에서 더 뛰어남을 모의실험 및 실제 사례 분석을 통해 확인하였다.

Adaptive Nearest Neighbors를 활용한 결측치 대치

  • 전명식;정형철
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2004년도 학술발표논문집
    • /
    • pp.185-190
    • /
    • 2004
  • 비모수적 결측치 대치 방법으로 널리 사용되는 k-nearest neighbors(KNN) 방법은 자료의 국소적(local) 특징을 고려하지 않고 전체 자료에 대해 균일한 이웃의 개수 k를 사용하는 단점이 있다. 본 연구에서는 KNN의 대안으로 자료의 국소적 특징을 고려하는 adaptive nearest neighbors(ANN) 방법을 제안하였다. 나아가 microarray 자료의 경우에 대하여 결측치 대치를 통해 KNN과 ANN의 성능을 비교하였다.

  • PDF

계층구조 신경망을 이용한 한글 인식 (Hangul Recognition Using a Hierarchical Neural Network)

  • 최동혁;류성원;강현철;박규태
    • 전자공학회논문지B
    • /
    • 제28B권11호
    • /
    • pp.852-858
    • /
    • 1991
  • An adaptive hierarchical classifier(AHCL) for Korean character recognition using a neural net is designed. This classifier has two neural nets: USACL (Unsupervised Adaptive Classifier) and SACL (Supervised Adaptive Classifier). USACL has the input layer and the output layer. The input layer and the output layer are fully connected. The nodes in the output layer are generated by the unsupervised and nearest neighbor learning rule during learning. SACL has the input layer, the hidden layer and the output layer. The input layer and the hidden layer arefully connected, and the hidden layer and the output layer are partially connected. The nodes in the SACL are generated by the supervised and nearest neighbor learning rule during learning. USACL has pre-attentive effect, which perform partial search instead of full search during SACL classification to enhance processing speed. The input of USACL and SACL is a directional edge feature with a directional receptive field. In order to test the performance of the AHCL, various multi-font printed Hangul characters are used in learning and testing, and its processing its speed and and classification rate are compared with the conventional LVQ(Learning Vector Quantizer) which has the nearest neighbor learning rule.

  • PDF

Adaptive Nearest Neighbors를 활용한 판별분류방법 (Adaptive Nearest Neighbors for Classification)

  • 전명식;최인경
    • 응용통계연구
    • /
    • 제22권3호
    • /
    • pp.479-488
    • /
    • 2009
  • 비모수적 판별분류방법으로 널리 사용되는 ${\kappa}$-Nearest Neighbors Classification(KNNC) 방법은 자료의 국소적 특징을 고려하지 않고 전체 자료에 대해 고정된 이웃의 개수 ${\kappa}$를 사용하여 개체를 분류하는 방법이다. 본 연구에서는 KNNC의 대안으로 자료의 국소적 특징을 고려하는 Adaptive Nearest Neighbors Classificaion(ANNC) 방법을 제안하였다. 제안된 방법의 특징을 규명하기 위하여 실제 자료에 대한 분석을 통하여 제안된 방법의 응용 가능성을 제시하였으며, 나아가 모의실험을 통하여 기존의 방법과의 효율성을 비교하였다.

대용량 자료에 대한 밀도 적응 격자 기반의 k-NN 회귀 모형 (Density Adaptive Grid-based k-Nearest Neighbor Regression Model for Large Dataset)

  • 유의기;정욱
    • 품질경영학회지
    • /
    • 제49권2호
    • /
    • pp.201-211
    • /
    • 2021
  • Purpose: This paper proposes a density adaptive grid algorithm for the k-NN regression model to reduce the computation time for large datasets without significant prediction accuracy loss. Methods: The proposed method utilizes the concept of the grid with centroid to reduce the number of reference data points so that the required computation time is much reduced. Since the grid generation process in this paper is based on quantiles of original variables, the proposed method can fully reflect the density information of the original reference data set. Results: Using five real-life datasets, the proposed k-NN regression model is compared with the original k-NN regression model. The results show that the proposed density adaptive grid-based k-NN regression model is superior to the original k-NN regression in terms of data reduction ratio and time efficiency ratio, and provides a similar prediction error if the appropriate number of grids is selected. Conclusion: The proposed density adaptive grid algorithm for the k-NN regression model is a simple and effective model which can help avoid a large loss of prediction accuracy with faster execution speed and fewer memory requirements during the testing phase.

벡터 양자화를 위한 고속 탐색 알고리듬에 관한 연구 (A Study on the Fast Search Algorithm for Vector Quantization)

  • 지상현;김용석;이남일;강상원
    • 한국음향학회지
    • /
    • 제22권4호
    • /
    • pp.293-298
    • /
    • 2003
  • 본 논문에서는 NNVQ (nearest neighbor vector quantization)를 위한 고속탐색 알고리듬을 제안하였다. 제안된 알고리듬은 입력 벡터 내 지정된 요소의 부호화 왜곡을 임계값과 비교해서 최적 코드워드가 될 가능성이 없는 코드워드를 탐색 대상 코드워드에서 제외함으로써 코드북 탐색의 범위를 줄인다. 이를 통해 기존의 풀서치(full-search) 알고리듬과 동일한 SD(spectral distortion) 성능을 얻으면서 부호화 과정에서의 처리시간과 복잡도를 감소시킨다. 제안된 알고리듬을 Gauss-Markov 소스에 대해 설계된 일반적인 벡터 양자화기와 3GPP에서 표준화된 AMR (adaptive multi-rate) 음성 코덱의 LSP 양자화기에 각각 적용하여 실험하였다. 실험결과 제안된 알고리듬은 SD 성능감쇄 없이 탐색 대상 범위를 감소시킴으로써 부호화시 복잡도를 50%이상 줄일 수 있었다.

필터 및 특징 선택 기반의 적응형 얼굴 인식 방법 (An Adaptive Method For Face Recognition Based Filters and Selection of Features)

  • 조병모;김기한;이필규
    • 한국콘텐츠학회논문지
    • /
    • 제9권6호
    • /
    • pp.1-8
    • /
    • 2009
  • 2D 영상 이미지를 인식하는데 있어서, 테스트 이미지를 입력 받는 카메라의 설치 공간 및 설정 상황에 따라 밝기, 명암, 빛의 방향 등과 같은 인식의 성능에 영향을 끼칠 수 있는 요소들이 매우 많이 존재한다. 본 논문은 카메라가 위치한 환경 상의 최소의 샘플 이미지를 가지고, 그 환경에서 입력되는 영상의 인식 성공률을 높일 수 있는 적응형 얼굴 인식 방법을 제안하고 있다. 제안한 적응형 얼굴 인식은 두 개의 부분으로 구성되어 있는데, 하나는 환경 적응을 하기 위한 부분이고, 다른 하나는 얼굴 인식을 수행하는 부분이다. 전자인 환경 적응 모듈에서는 안정 상태 유전 알고리즘을 사용하여 인식기가 최적의 성능을 낼 수 있는 필터 조합과 필터 파라메터와 특징 벡터 집합 차원을 결정하고, 후자인 얼굴 인식 모듈에서는 그 결과를 사용하여 얼굴 인식 결과를 확인한다. 얼굴 인식 과정에서 이미지 사이의 유사도를 측정하기 위해서 가보 웨이블릿을 사용하였고, 인식의 결과를 도출하는 과정에서는 k-Nearest Neighbor을 사용하였다. 적응형 얼굴 인식 방법을 테스트 하기위해, 사인 함수의 가중치를 사용한 명암 노이즈, 임펄스 노이즈, 복합 노이즈에 관하여 각각 실험을 하였고, 진화 후에는 일반적으로 발생할 수 있는 노이즈에 대한 급격한 인식률 저하를 방지할 수 있음을 확인하였다.

적응형 복합 분류 알고리즘을 이용한 초소형 전자소자 탐지 향상 기법 (Improved Detecting Schemes for Micro-Electronic Devices Based on Adaptive Hybrid Classification Algorithms)

  • 김광열;임정환;김송강;조준경;신요안
    • 한국통신학회논문지
    • /
    • 제38A권6호
    • /
    • pp.504-511
    • /
    • 2013
  • 본 논문은 지적재산권 보호를 위한 방안으로 적응형 알고리즘 기반의 초소형 전자소자 탐지 기법을 제안한다. 전자소자를 탐지하는 기본 원리는 분류기의 송신기에서 특정 기본 주파수의 전파가 은닉된 물체로 전파되면, 물체로부터 반사되어 수신기로 들어오는 2차 및 3차 고조파의 크기를 분류기가 비교함으로써 판별하게 된다. 하지만, 측정 과정에서 발생하는 잡음 및 전자파의 간섭으로 인해 분류의 성능이 저하되므로, 이러한 환경에서도 은닉된 전자소자를 적응적으로 판별하기 위해 Fuzzy c-Means 클러스터링 알고리즘과 ${\kappa}$-Nearest Neighbor 분류 알고리즘을 복합적으로 이용하는 방안을 제시한다. 모의실험 결과, 제안 기법이 잡음 및 전자파 간섭 환경에서도 적응적으로 전자소자 잘 탐지할 수 있었으며, 이에 따라 지적재산권을 효율적으로 보호할 수 있을 것으로 기대된다.

유전자 알고리즘 및 국소 적응 오퍼레이션 기반의 의료 진단 문제 자동화 기법 연구 (Medical Diagnosis Problem Solving Based on the Combination of Genetic Algorithms and Local Adaptive Operations)

  • 이기광;한창희
    • 지능정보연구
    • /
    • 제14권2호
    • /
    • pp.193-206
    • /
    • 2008
  • 의료 진단 문제는 기정의된 특성치들로 표현되는 환자의 상태 데이터로부터 병의 유무를 판단하는 일종의 분류 문제로 간주할 수 있다. 본 연구는 혼용 유전자 알고리즘 기반의 분류방법을 도입함으로써 의료 진단 문제와 같은 다차원의 패턴 분류 문제를 해결할 수 있는 방안을 제안하고 있다. 일반적으로 분류 문제는 데이터 패턴에 존재하는 여러 클래스 간 구분경계를 생성하는 접근방법을 사용하는데, 이를 위해 본 연구에서는 일단의 영역 에이전트들을 도입하여 이들을 유전자 알고리즘 및 국소 적응조작을 혼용함으로써 데이터 패턴에 적응하도록 유도하고 있다. 일반적인 유전자 알고리즘의 진화단계를 거친 에이전트들에 적용되는 국소 적응조작은 영역 에이전트의 확장, 회피 및 재배치로 이루어지며, 각 에이전트의 적합도에 따라 이들 중 하나가 선택되어 해당 에이전트에 적용된다. 제안된 의료 진단용 분류 방법은 UCI 데이터베이스에 있는 잘 알려진 의료 데이터, 즉 간, 당뇨, 유방암 관련 진단 문제에 적용하여 검증하였다. 그 결과, 기존의 대표적인 분류기법인 최단거리이웃방법(the nearest neighbor), C4.5 알고리즘에 의한 의사 결정트리(decision tree) 및 신경망보다 우수한 진단 수행도를 나타내었다.

  • PDF