• Title/Summary/Keyword: adaptive importance sampling

Search Result 16, Processing Time 0.021 seconds

Non-parametric Adaptive Importance Sampling for Fast Simulation Technique (속산 시뮬레이션을 위한 적응형 비모수 중요 샘플링 기법)

  • 김윤배
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.3
    • /
    • pp.77-89
    • /
    • 1999
  • Simulating rare events, such as probability of cell loss in ATM networks, machine failure in highly reliable systems, requires huge simulation efforts due to the low chance of occurrence. Importance Sampling (IS) has been applied to accelerate the occurrence of rare events. However, it has a drawback of effective biasing scheme to make the estimator of IS unbiased. Adaptive Importance Sampling (AIS) employs an estimated sampling distribution of IS to the system of interest during the course of simulation. We propose Nonparametric Adaptive Importance Sampling (NAIS) technique which is nonparametrical version of AIS. We test NAIS to estimate a probability of rare event in M/M/1 queueing model. Comparing with classical Monte Carlo simulation, the computational efficiency and variance reductions gained via NAIS are substantial. A possible extension of NAIS regarding with random number generation is also discussed.

  • PDF

Adaptive kernel method for evaluating structural system reliability

  • Wang, G.S.;Ang, A.H.S.;Lee, J.C.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.2
    • /
    • pp.115-126
    • /
    • 1997
  • Importance sampling methods have been developed with the aim of reducing the computational costs inherent in Monte Carlo methods. This study proposes a new algorithm called the adaptive kernel method which combines and modifies some of the concepts from adaptive sampling and the simple kernel method to evaluate the structural reliability of time variant problems. The essence of the resulting algorithm is to select an appropriate starting point from which the importance sampling density can be generated efficiently. Numerical results show that the method is unbiased and substantially increases the efficiency over other methods.

PERFORMANCE EVALUATION VIA MONTE CARLO IMPORTANCE SAMPLING IN SINGLE USER DIGITAL COMMUNICATION SYSTEMS

  • Oh Man-Suk
    • Journal of the Korean Statistical Society
    • /
    • v.35 no.2
    • /
    • pp.157-166
    • /
    • 2006
  • This research proposes an efficient Monte Carlo algorithm for computing error probability in high performance digital communication st stems. It characterizes special features of the problem and suggests an importance sampling algorithm specially designed to handle the problem. It uses a shifted exponential density as the importance sampling density, and shows an adaptive way of choosing the rate and the origin of the shifted exponential density. Instead of equal allocation, an intelligent allocation of the samples is proposed so that more samples are allocated to more important part of the error probability. The algorithm uses the nested feature of the error space and avoids redundancy in estimating the probability. The algorithm is applied to an example data set and shows a great improvement in accuracy of the error probability estimation.

An Efficient Adaptive Sampling Technique based on the Kalman Filter for Sensor Monitoring (센서 모니터링을 위한 칼만필터 기반의 효율적인 적응적 샘플링 기법)

  • Kim, Min-Kee;Min, Jun-Ki
    • The KIPS Transactions:PartD
    • /
    • v.17D no.3
    • /
    • pp.185-192
    • /
    • 2010
  • In sensor network environments, each sensor measures the physical environments according to the sampling period, and transmits a sensor reading to the base station. Thus, the sample period influences against importance resources such as a network bandwidth, and a battery power. In this paper, we propose new adaptive sampling technique that adjusts the sampling period of a sensor with respect to the features of sensor readings. The proposed technique predicts a future readings based on KF (Kalman Filter). By using the differences of actual readings and estimated reading, we identify the importance of sensor readings, and then, we adjust the sampling period according to the importance. In our experiments, we demonstrate the effectiveness of our technique.

Reliability Analysis of Stochastic Finite Element Model by the Adaptive Importance Sampling Technique (적응적 중요표본추출법에 의한 확률유한요소모형의 신뢰성분석)

  • 김상효;나경웅
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.351-358
    • /
    • 1999
  • The structural responses of underground structures are examined in probability by using the elasto-plastic stochastic finite element method in which the spatial distributions of material properties are assumed to be stochastic fields. In addition, the adaptive importance sampling method using the response surface technique is used to improve simulation efficiency. The method is found to provide appropriate information although the nonlinear Limit State involves a large number of basic random variables and the failure probability is small. The probability of plastic local failures around an excavated area is effectively evaluated and the reliability for the limit displacement of the ground is investigated. It is demonstrated that the adaptive importance sampling method can be very efficiently used to evaluate the reliability of a large scale stochastic finite element model, such as the underground structures located in the multi-layered ground.

  • PDF

A New Fast Simulation Technique for Rare Event Simulation

  • Kim, Yun-Bae;Roh, Deok-Seon;Lee, Myeong-Yong
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1999.04a
    • /
    • pp.70-79
    • /
    • 1999
  • Importance Sampling (IS) has been applied to accelerate the occurrence of rare events. However, it has a drawback of effective biasing scheme to make the estimator from IS unbiased. Adaptive Importance Sampling (AIS) employs an estimated sampling distribution of IS to the systems of interest during the course of simulation. We propose Nonparametric Adaptive Importance Sampling (NAIS) technique which is nonparametrically modified version of AIS and test it to estimate a probability of rare event in M/M/1 queueing model. Comparing with classical Monte Carlo simulation, the computational efficiency and variance reductions gained via NAIS are substantial. A possible extension of NAIS regarding with random number generation is also discussed.

  • PDF

A novel reliability analysis method based on Gaussian process classification for structures with discontinuous response

  • Zhang, Yibo;Sun, Zhili;Yan, Yutao;Yu, Zhenliang;Wang, Jian
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.771-784
    • /
    • 2020
  • Reliability analysis techniques combining with various surrogate models have attracted increasing attention because of their accuracy and great efficiency. However, they primarily focus on the structures with continuous response, while very rare researches on the reliability analysis for structures with discontinuous response are carried out. Furthermore, existing adaptive reliability analysis methods based on importance sampling (IS) still have some intractable defects when dealing with small failure probability, and there is no related research on reliability analysis for structures involving discontinuous response and small failure probability. Therefore, this paper proposes a novel reliability analysis method called AGPC-IS for such structures, which combines adaptive Gaussian process classification (GPC) and adaptive-kernel-density-estimation-based IS. In AGPC-IS, an efficient adaptive strategy for design of experiments (DoE), taking into consideration the classification uncertainty, the sampling uniformity and the regional classification accuracy improvement, is developed with the purpose of improving the accuracy of Gaussian process classifier. The adaptive kernel density estimation is introduced for constructing the quasi-optimal density function of IS. In addition, a novel and more precise stopping criterion is also developed from the perspective of the stability of failure probability estimation. The efficiency, superiority and practicability of AGPC-IS are verified by three examples.

A Reliability Analysis Application and Comparative Study on Probabilistic Structure Design for an Automatic Salt Collector (자동채염기의 확률론적 구조설계 구현을 위한 신뢰성 해석 응용과 비교연구)

  • Song, Chang Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.70-79
    • /
    • 2020
  • This paper describes a comparative study of characteristics of probabilistic design using various reliability analysis methods in the structure design of an automatic salt collector. The thickness sizing variables of the main structural member were considered to be random variables, including the uncertainty of corrosion, which would be an inevitable hazard in the work environment of the automatic salt collector. Probabilistic performance functions were selected from the strength performances of the automatic salt collector structure. First-order reliability method, second-order reliability method, mean value reliability method, and adaptive importance sampling method were applied during the reliability analyses. The probabilistic design performances such as reliability probability and numerical costs based on the reliability analysis methods were compared to the Monte Carlo simulation results. The adaptive importance sampling method showed the most rational results for the probabilistic structure design of the automatic salt collector.

Efficiency and Robustness of Fully Adaptive Simulated Maximum Likelihood Method

  • Oh, Man-Suk;Kim, Dai-Gyoung
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.3
    • /
    • pp.479-485
    • /
    • 2009
  • When a part of data is unobserved the marginal likelihood of parameters given the observed data often involves analytically intractable high dimensional integral and hence it is hard to find the maximum likelihood estimate of the parameters. Simulated maximum likelihood(SML) method which estimates the marginal likelihood via Monte Carlo importance sampling and optimize the estimated marginal likelihood has been used in many applications. A key issue in SML is to find a good proposal density from which Monte Carlo samples are generated. The optimal proposal density is the conditional density of the unobserved data given the parameters and the observed data, and attempts have been given to find a good approximation to the optimal proposal density. Algorithms which adaptively improve the proposal density have been widely used due to its simplicity and efficiency. In this paper, we describe a fully adaptive algorithm which has been used by some practitioners but has not been well recognized in statistical literature, and evaluate its estimation performance and robustness via a simulation study. The simulation study shows a great improvement in the order of magnitudes in the mean squared error, compared to non-adaptive or partially adaptive SML methods. Also, it is shown that the fully adaptive SML is robust in a sense that it is insensitive to the starting points in the optimization routine.

Adaptive Importance Sampling Method with Response Surface Technique (응답면기법을 이용한 적응적 중요표본추출법)

  • 나경웅;김상효;이상호
    • Computational Structural Engineering
    • /
    • v.11 no.4
    • /
    • pp.309-320
    • /
    • 1998
  • 중요표본추출기법중에서도 층화표본추출법을 이용한 적응적 중요표본추출기법이 일반적으로 가장 합리적인 것으로 알려져 있다. 그러나 확률장 유한요소모형문제와 같이 기본 확률변수의 규모가 큰 경우에는 층화표본추출법에서 요구되는 기본적인 표본점의 규모가 급증하여 효율성이 떨어지게 된다. 본 연구에서는 이러한 한계성을 극복하기 위하여 층화표본추출에서 기본확률변수를 사용하는 대신에 기본확률변수들의 함수이며 새로운 확률변수인 응답값을 이용하는 방법을 개발하였다. 여기에서 응답값은 일반적인 함수형태로 표시되지 않으며, 한 번의 응답계산에 많은 계산량이 소요되므로 이러한 문제점을 해결하기 위하여 응답면식을 이용한 층화표본추출법을 개발하였다. 개발된 기법에서는 기본확률변수의 모의발생규모는 기본의 기본확률변수를 이용한 층화표본추출법에서 보다 증가하지만 매우 많은 계산량을 요구하는 실제응답해석규모는 응답면식을 이용함으로써 획기적으로 감소되었다. 특히 본 기법은 기본확률변수의 규모가 크고 대상한계상태의 파괴확률이 낮을수록 기존의 방법과 비교해 효율성이 증대되는 것으로 분석되었다.

  • PDF