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Abstract

When a part of data is unobserved the marginal likelihood of parameters given the observed data often in-
volves analytically intractable high dimensional integral and hence it is hard to find the maximum likelihood
estimate of the parameters. Simulated maximum likelihood(SML) method which estimates the marginal like-
lihood via Monte Carlo importance sampling and optimize the estimated marginal likelihood has been used in
many applications. A key issue in SML is to find a good proposal density from which Monte Carlo samples are
generated. The optimal proposal density is the conditional density of the unobserved data given the parameters
and the observed data, and attempts have been given to find a good approximation to the optimal proposal den-
sity. Algorithms which adaptively improve the proposal density have been widely used due to its simplicity and
efficiency. In this paper, we describe a fully adaptive algorithm which has been used by some practitioners but
has not been well recognized in statistical literature, and evaluate its estimation performance and robustness via
a simulation study. The simulation study shows a great improvement in the order of magnitudes in the mean
squared error, compared to non-adaptive or partially adaptive SML methods. Also, it is shown that the fully
adaptive SML is robust in a sense that it is insensitive to the starting points in the optimization routine.
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1. Introduction

In many statistical models a part of data is unobserved (missing), so the complete data consists of
observed and unobserved data. Let x denote a vector of observed data and let u denote a vector of
unobserved data. Assume that the complete data (x, u) follows a parametric distribution with density
f(x,u;0), where 6 is a vector of unknown parameters.

The observed likelihood function or the marginal likelihood function of 8 is given by

l(9;x):ff(x,u;9)du (L.1)

and the maximum likelihood estimate(MLE) of # is obtained by maximizing {(6; x) with respect to 6.
In many practical cases, however, the MLE of @ is not analytically feasible since the integral in (1.1)
is analytically intractable and high dimensional.

Due to recent development of high speed computing facilities, Monte Carlo methods have attracted
many researchers and practitioners as a solution to the above integration problem. In particular, simu-
lated maximum likelihood(SML) method estimates the integral by an average based on simulated data

This work was supported by the Korea Research Foundation Grant funded by the Korean Government(MOEHRD, Basic
Research Promotion Fund)(KRF-2007-531-C00016).

! Corresponding author: Professor, Department of Statistics, Ewha Womans University, Dae-Hyun Dong 11-1, Seoul
120-750, Korea. E-mail: msoh@ewha.ac.kr



480 Man-Suk Oh, Dai-Gyoung Kim

set and approximates the MLE by maximizing the estimated likelihood function. Due to its simplic-
ity and efficiency, SML has been used in many applications (Crepon and Duguet, 1997; Danielsson,
1994; Hum et al., 2003; Jank and Booth, 2003; Kao ef al., 2001; Lee, 1995; Munkin and Trivedi,
1999).

In SML, the integral is often estimated using Importance Sampling(IS) Monte Carlo method.
Importance Sampling estimates the marginal likelihood by

1% S uis6)

i@, x) =
@ N & gu)

, 1.2)

where g(u) is a density function of u and uy,...,uy is a random sample from a distribution with
density g(u). Since u; follows the density function g(u),

flx, u; 6)

E [i6; x)] = )

g(uydu = ff(x, u, du = K6, x).
Thus, with a large number of simulation samples, i; x converges to /(8; x) and the maximum point
of i(8; x) would be an approximate MLE of 6.

Compared with Markov chain Monte Carlo method, Importance Sampling has several advantages.
First, it directly generates random samples of vector u instead of generating elements of u from con-
ditional distributions, so it is often very efficient in high dimensional integrals. Second, it is less
restrictive since it does not generate samples from exact (conditional) distributions. Finally, estima-
tion error can be easily computed.

The efficiency of IS depends on the choice of the density function g(u), called the importance
sampling density or the proposal density. In SML, the optimal proposal density is a density function
which is proportional to f(x, u; 6) for each given x and 6, i.e., the optimal g(u) is g" (1) = f(ulx, ),
where f(u}x, 6) is a conditional density of u given x and 6.

At 8 = 6y, the optimal proposal density is f(ulx,8y1z) and the estimation error in i(GMLE; Xx)
is zero, where Gy is the MLE of 8 (Zhang, 1996; McCulloch, 1997). For this reason, g =
f(ulx, 8y) is called the optimal proposal density. However, since it is optimal only at 8., g (u) is
only a locally optimal proposal density. The locally optimal proposal density g (u) is not possible to
obtain since we don’t know 8y and/or it is hard to find the closed form of f(u|x, 6y ). A remedy
to this problem is to find an approximation or a guess 8 of A,z and use a Laplace approximation of
flulx, ),

frap (u{x, @) = density function of N (;1 (é) X (@)) ,

where u(9) and () are the Laplace approximations to the mean and variance of f(u|x, 8), respectively.

However, Jank (2006) showed that the accuracy of SML highly depends on the choice of 6 and
that SML may lead to significantly misleading results if @ is far from 6y £. This implies that in the
beginning we need to have good information about y; g, Which is generally unavailable. To overcome
this problem of lacking information about 8y, ¢, adaptive Importance Sampling schemes have been
proposed. Instead of using one proposal density fi,(ulx, 6) throughout the simulation, Jank (2006)
divides the simulation into several stages and at each stage it updates 8 by using an estimate of 6y, £
from the previous stage, to obtain a better approximation to the locally optimal proposal density.

The adaptive SML significantly improves the efficiency of SML. However, it has some key issues.
First, numerical optimization schemes in SML. require computation of i(é; x) not only at A or Oy but
at various other values of 8. However, the approximate locally optimal proposal density f.,(ulx, (9)
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is optimal only for i(8; x), not for general i(H; x). Even for 6 close to 8, I(8; x) and I(#; x) may be
quite different and f;,,(u|x, §) may not be a good proposal density for estimating /(; x), 6 # 6. Tn
other words, Jank’s adaptive scheme tries to find an approximation to f(ulx, fyrg) but f(ulx, Oy 1) is
optimal only for i(eMLE; x) and it may not be a good choice for i(é); x), 8 # Oy e, which is repeatedly
computed in SML. Second, it uses & obtained from the previous stage and restart SML in the current
stage, thus the final estimate of 8y is obtained using random samples only from the last stage,
wasting precious random samples from all the previous stages.

A fully adaptive SML attempts to find a good approximation to f(u|x,6) for each 6, rather than
focusing on Oyre. In other words, for each 8, g(ul) = frap(ulx,6) is used as a proposal density
in Importance Sampling. Note that the proposal density of u depends on 6, Equation (1.2) is then
replaced by

N
5 1 105 x, u;)
6, x) = — § bl
N & g(uil6)

For each 6, I(8; x) converges to /(8; x) and the variance of the estimate would be zero if the Laplace
approximation is exact.

In stead of using one proposal density throughout the simulation or in each stage of adaptive SML,
the fully adaptive scheme uses a new proposal density g(u|9) which is an approximation to the optimal
proposal density f(u|x,8) for each and every new value of 4. In other words, it is fully adaptive in
a sense that it updates g for each new value of §. Thus, compared with Jank’s adaptive SML which
we call a partially adaptive SML, in the fully adaptive SML each stage consists of one iteration and
it updates g instead of 4 so that g is approximately optimal for computing {(6; x) for each given 6.
Thus, it highly improves the accuracy of Importance Sampling estimate [(8; x) for each 6 and hence
improves the efficiency of SML, as will be shown in a simulation study given in Section 3. Also, the
fully adaptive SML uses a new parameter values of g at each iteration but uses all the random samples
u; in the estimation of the marginal likelihood. So it does not waste random samples and it does not
require appropriate sample sizes in stages.

Though non-adaptive SML is considered as the main SML algorithm in the statistical literature, the
fully adaptive SML has been used in some applications such as state space model, multinomial probit
model, and econometrics literature (Durbin and Koopman, 1997, 2000; Stern, 1997; Richard and
Zhang, 2007). However, the fully adaptive SML has not been well recognized in statistical literature
and the efficiency of fully adaptive SML has not been well understood. Only recently Brinch (2008)
described the fully adaptive SML in detail, which he named tilted importance sampling, and developed
the distinction between the fully adaptive SML and the simple SML.

In this paper, we describe the fully adaptive SML in a way to help understanding why it is more
efficient than the simple non-adaptive SML or partially adaptive SML, and study its estimation per-
formance compared with the non-adaptive and partially adaptive SML via a simulation study. We also
study its robustness to the initial values of the parameters of interest in the estimation process.

This paper is organized as follows, In Section 2, details of the fully adaptive SML method is
described. In Section 3, the efficiency and robustness comparison between the fully adaptive SML,
the non-adaptive and partially adaptive SML is given via a simulation study. A brief summary and
discussion is given in Section 4.
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2. Fully Adaptive SML

Laplace approximation to f{u|x, §) is a density function of Normal distribution with mean and variance
equal to the mode and curvature at the mode of f(ulx, 8), respectively. Let L(6; x, u) = log f(x,u;6)
then the Laplace approximation of the mean y(8) is #(6) where 2(6) is the maximizer of L(6; x, u) with
respect to u, satisfying 8/6ul(8; x, u)|,—aey = 0. The Laplace approximation of the variance Z(6) is
minus the inverse Hessian of L at u = #{#). Note that the mean and variance of # depend on 6 so that
g(ul6) has the optimal mean and variance for each given 4.

SML maximizes {(6; x) where i6; x) is given in (1.2) with &; ~ N(u(6), £(6)). However, in opti-
mizing Monte Carlo estimate {(; x) with respect to 6, i(8; x) should depend only on 6 for stability in
the optimization routine. In this case, i(f?; x) depends not only on 6 but also on the random samples u;,
resulting in a different value of /(; x) even for the same ¢ and N and hence instability in the optimiza-
tion. To avoid the instability, the random samples used in the Monte Carlo estimation should be fixed
for all iterations in the optimization. This can be done as follows: generate a set of random variables
{zi}fi | from N(0, I) and keep using it in each step of optimization by using the transformation

=T )z + p(8),

where T'(6) is a lower triangular matrix such that 7(6)7'(8) = £(6). In this way, a fixed set of {z;} is
used in each iteration, yet u; follows N(u(6), Z(#)) and the SML essentially optimizes a fixed (non-
random) function i(e; x) of 8. Moreover, use of the same set of random variates may reduce the cost
of generating random samples in each iteration and hence increase the efficiency of SML.

Now the fuily adaptive SML algorithm is summarized.

¢ Step 1: Genperate z; from N(0, I}, fori = 1,..., N and store them in a table.

e Step 2: Maximize

U(F; x, u;)
9 —
i00=5 3 gy £ui6)
over 6, where g(ulf) = f1,,(u|x, 6) = density function of N(u(8), X(8)), u; = T(8)z; +u(6) and T ()
is a lower triangular matrix such that T(6)T"(8) = Z(6).

In Importance Sampling, tails of the proposal density g should be heavier than or equal to those of
f(ulx, 6) to avoid variance inflation in Monte Carlo estimates (Oh and Berger, 1992). Normal density
converges to 0 fast for extreme values in either direction and may cause the variance inflation problem.
A solution to this problem is to use a 7 density with a small degrees of freedom in place of normal
distribution in the Laplace approximation of f(ulx, 8).

3. Performance Evaluation and Robustness via a Simulation Study

Suppose that the binary responses x;;, i = 1,...,q, j = 1,...,n, are obtained from the following
logistic-normal model: X;; are conditionally independent with X;;lu; ~ Bemoulli(z;;), where

logit(m;;) = log T =B+~ N, ad).

T(ij

Jank (2006) generated data from the logistic-normal model with ¢ = 10,n = 15,8 = 5,0 =
0.5, t;; = j/15 and the date are presented in Table 1.
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Table 1: Simulated logistic-normal data x;;

J
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 i5
1 1 0 0 0 0 1 1 0 1 1 1 1 1 1 1
2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 i 1 1
5 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1
6 0 0 0 1 0 1 1 1 0 1 1 1 1 1 1
7 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

In this model the integral involved in the marginal likelihood is low dimensional and one can
obtain a very accurate estimate of MLE of the model parameters 6 = (3, o). The (almost) exact MLE
of s Oyre = Bure, 0%, ) = (6.132,1.766).

Assuming that we don’t know the MLE, we applied the non-adaptive SML, the partially adaptive
SML of Jank (2006), and the fully adaptive SML with N = 600 and 6000. In the partial adaptive SML,
we tried 3 stages with 100, 200, 300 sample sizes in the three stages, respectively, when N = 600, and
1000, 2000, 3000 sample sizes when N = 6000.

To study robustness of the schemes, we used four different starting points of 8 = (8, %) as shown
in Tables 2 and 3, and used DUMPOL, the optimization routine for non-smooth functions in IMSL
(1989) library, in all the three SML methods. We repeated the sirr}ulation 100 times and averaged the
Mean Squared Error(MSE), MLE; = (3—fwrg)? and MLE,: = (c2—073,, ;)*, and the computing time
T in seconds, which are reported in Table 2. All the computations are done using PC with Pentium IV
Processor. Considering both MSE and computing time 7', we also calculated an efficiency measure

1

Eff = ———
I = MiExT

for 8 and o, and they are presented in Table 3.

The results clearly show great improvements of the MSE and the efficiency in the fully adaptive
SML method. Since the fully adaptive SML computes p(d) and Z(6) for each given 6, the computing
time of fully adaptive method is larger than those of other methods. However, it reduces MSE in the
order of magnitudes and hence greatly improved the overall efficiency.

In the non-adaptive scheme and the partially adaptive scheme, the MSE’s do not always get smaller
as the Monte Carlo sample size N gets larger. Even when there is a reduction in MSE’s for the larger
N the reduction is very small compared to the increased computing time, resulting in the decrease
of efficiency. Note that the efficiency is smaller when N = 6000 in all the cases shown in Table
3. However, in the fully adaptive scheme the MSE’s are much smaller for the larger N, resulting in
the increase of efficiency, in all the cases. Moreover, the MSE’s in the fully adaptive scheme with
N = 600 are much smaller than those in the non- or partially adaptive scheme with N = 6000. These
imply that simply increasing the Monte Carlo sample size does not necessarily improve the accuracy
of SML and an appropriate scheme for finding a good proposal density is much more important.

Note also that the fully adaptive SML is insensitive to the initial values of the parameters. This may
be because the fully adaptive scheme computes a very accurate estimate of the marginal likelihood,
the function to be optimized, and provides a good direction to the numerical optimization routine.

We also tried # density with various degrees of freedom in these examples but the results are about
the same, implying that the normal proposal density seems to be a reasonable choice.
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Table 2: MSE and computing time

initial N Non-adaptive Partially Adaptive Fully-adaptive
MSE; MSE» T MSE; MSE2 T MSEg  MSE. T

1,0 600 17072 19372 4.1 02994  0.5037 3.4 0.00001  0.00068 11.6
’ 6000 10887 1.4413 276 0.0873 0.2180 243 0.00001  0.00008  64.5
2,12 600 03403 04784 31 0.0351  0.2033 3.0 0.00019  0.00135 116
’ 6000  0.1600 0.2315 304 0.0186 0.5889 283 0.00001 0.00008  77.7
@ 1.4) 600  0.1383 04010 33 0.1536  0.6025 3.0 0.00007  0.00059 14.8
T 6000  0.1280 02028 303 00195 0.2982 281 0.00001  0.00007  72.6
600 0.0125  0.0306 3.0 0.0386  0.2764 3.0 0.00014  0.00118 9.52

(6132, 1.766) 6000 0.0061 0.1483  29.2 0.0136  0.2451 274 0.00001  0.00007 724

Table 3: Efficiency

nitial N Non-adaptive Partially Adaptive Fully-adaptive
EfTs Effa Effs ___Elfye Effs __ Effe
©, 1 600 0.1425 0.1256 0.9880 0.5870 926.5 124.8
’ 6000 0.0332 0.0251 0.4720 0.1890 1408.9 186.3
212 600 0.9509 0.6765 9.5652 1.6510 476.4 66.3
T 6000 0.2056 0.1419 1.8966 0.0600 11952 156.4
@ 14) 600 22178 0.7649 2.1775 0.5551 901.8 113.9
T 6000 0.2585 0.1631 1.8215 0.1194 1410.1 1954
(6.132, 1.766) 600 26.7940 10.9410 8.5216 1.1902 725.2 89.3
e 6000 5.6080 0.2308 2.6852 0.1488 1512.6 1972

4. Summary and Discussion

Simulated Maximum Likelihood estimates an intractable marginal likelihood via Importance Sam-
pling Monte Carlo method and optimizes the Monte Carlo estimate of the likelihood to find the maxi-
mum likelihood estimate of parameters of interest 6, when data contains missing observations. A key
issue in Importance Sampling is an appropriate choice of the proposal density function from which
simulation samples are generated. Efforts have been given to find a good approximation to the locally
optimal proposal density which is optimal at the MLE itself. However, the locally optimal proposal
density is optimal only at the MLE while optimization routines require computation of the marginal
likelihood at many other values of 6.

In this paper, a fully adaptive SML method is described in a way to help understanding its dis-
tinction from the non- or partially adaptive SML and its source of improved efficiency. It provides
a good approximation to the optimal proposal density at each given 4. Thus, while the optimization
routines explore the space of 9, the fully adaptive SML provides a good estimate of the function to be
optimized at each given 6. In this sense, the proposal density is globally optimal rather than locally
optimal.

Also, to stabilize the optimization of Monte Carlo estimates, it fixes standard normal random
samples in Monte Carlo estimation but uses transformations appropriate for each given 6.

The fully adaptive SML is very simple and a simulation study shows a dramatic improvement in
the accuracy and efficiency compared to the currently available non-adaptive and a partiaily adaptive
SML methods. Moreover, it contains almost the same efficiency even for very bad initial values of 6,
implying robustness of the method.

In this paper, we use a normal or ¢ density function for the functional form of the proposal density.
Other density functions such as gamma or beta may be used if we have some information about the
shape of the conditional density of u given x and 6.
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