• Title/Summary/Keyword: adaptive evolutionary algorithms

Search Result 43, Processing Time 0.023 seconds

Crack Identification Based on Synthetic Artificial Intelligent Technique (통합적 인공지능 기법을 이용한 결함인식)

  • Sim, Mun-Bo;Seo, Myeong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2062-2069
    • /
    • 2001
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses synthetic artificial intelligent technique, that is, Adaptive-Network-based Fuzzy Inference System(ANFIS) solved via hybrid learning algorithm(the back-propagation gradient descent and the least-squares method) are used to learn the input(the location and depth of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this ANFIS and a continuous evolutionary algorithm(CEA), it is possible to formulate the inverse problem. CEAs based on genetic algorithms work efficiently for continuous search space optimization problems like a parameter identification problem. With this ANFIS, CEAs are used to identify the crack location and depth minimizing the difference from the measured frequencies. We have tried this new idea on a simple beam structure and the results are promising.

Crack identification based on synthetic artificial intelligent technique (통합적 인공지능 기법을 이용한 결함인식)

  • Shim, Mun-Bo;Suh, Myung-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.182-188
    • /
    • 2001
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses synthetic artificial intelligent technique, that is, Adaptive-Network-based Fuzzy Inference System(ANFIS) solved via hybrid learning algorithm(the back-propagation gradient descent and the least-squares method) are used to learn the input(the location and depth of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this ANFIS and a continuous evolutionary algorithm(CEA), it is possible to formulate the inverse problem. CEAs based on genetic algorithms work efficiently for continuous search space optimization problems like a parameter identification problem. With this ANFIS, CEAs are used to identify the crack location and depth minimizing the difference from the measured frequencies. We have tried this new idea on a simple beam structure and the results are promising.

  • PDF

A Self-Adaptive Crossover for Improving Performance of Genetic Algorithms (유전 알고리즘의 성능 향상을 위한 자기-적응형 교배 기법)

  • Lee, Jong-Hyun;Lim, Dong-Hyun;Ahn, Chang-Wook
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06a
    • /
    • pp.130-133
    • /
    • 2010
  • 본 논문에서는 유전 알고리즘의 성능 향상을 위해 교배(Crossover) 기법의 중요 매개변수인 교배 교차점(Crossover Point)의 수를 개체군(Population)의 진화 과정 중에 적응적으로 변화 할 수 있는 자기-적응형(Self-Adaptive) 교배 기법을 제안한다. 이를 위해 제안 교배 기법은 전체 개체군을 다수개의 작은 개체군들로 군집화(Grouping)하여 일차적으로 서로 다른 교차점을 갖는 교배 기법을 적용시키고, 그 후 각 군집의 개체(Individual)들의 선택률을 기반으로 군집들간의 경쟁을 수행한다. 이는 유전 알고리즘이 개체군의 진화 과정 중에 문제에 적합한 교차점을 갖는 교배 기법을 적응적으로 사용할 수 있도록 한다. 또한 제안 교배 기법은 진화 과정 중에 교차점이 지속적으로 변화되므로 알고리즘 초반에는 높은 탐색 능력을 보유하게 되고 후반에는 높은 부분-해(Building-Block) 보존 능력을 지니게 되어, 최적 해(Optimal Solution)로의 수렴 능력이 향상된다. Deceptive 문제를 통해 제안 자기-적응형 교배 기법과 기존 (고정 교차점) 교배 기법의 성능을 비교 하였으며, 실험 결과로부터 제안 교배의 성능 우위를 확인하였다.

  • PDF

An Optimization Algorithm with Novel Flexible Grid: Applications to Parameter Decision in LS-SVM

  • Gao, Weishang;Shao, Cheng;Gao, Qin
    • Journal of Computing Science and Engineering
    • /
    • v.9 no.2
    • /
    • pp.39-50
    • /
    • 2015
  • Genetic algorithm (GA) and particle swarm optimization (PSO) are two excellent approaches to multimodal optimization problems. However, slow convergence or premature convergence readily occurs because of inappropriate and inflexible evolution. In this paper, a novel optimization algorithm with a flexible grid optimization (FGO) is suggested to provide adaptive trade-off between exploration and exploitation according to the specific objective function. Meanwhile, a uniform agents array with adaptive scale is distributed on the gird to speed up the calculation. In addition, a dominance centroid and a fitness center are proposed to efficiently determine the potential guides when the population size varies dynamically. Two types of subregion division strategies are designed to enhance evolutionary diversity and convergence, respectively. By examining the performance on four benchmark functions, FGO is found to be competitive with or even superior to several other popular algorithms in terms of both effectiveness and efficiency, tending to reach the global optimum earlier. Moreover, FGO is evaluated by applying it to a parameter decision in a least squares support vector machine (LS-SVM) to verify its practical competence.

Behavior Evolution of Autonomous Mobile Robot(AMR) using Genetic Programming Based on Evolvable Hardware

  • Sim, Kwee-Bo;Lee, Dong-Wook;Zhang, Byoung-Tak
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.1
    • /
    • pp.20-25
    • /
    • 2002
  • This paper presents a genetic programming based evolutionary strategy for on-line adaptive learnable evolvable hardware. Genetic programming can be useful control method for evolvable hardware for its unique tree structured chromosome. However it is difficult to represent tree structured chromosome on hardware, and it is difficult to use crossover operator on hardware. Therefore, genetic programming is not so popular as genetic algorithms in evolvable hardware community in spite of its possible strength. We propose a chromosome representation methods and a hardware implementation method that can be helpful to this situation. Our method uses context switchable identical block structure to implement genetic tree on evolvable hardware. We composed an evolutionary strategy for evolvable hardware by combining proposed method with other's striking research results. Proposed method is applied to the autonomous mobile robots cooperation problem to verify its usefulness.

Design of Evolvable Hardware for Behavior Evolution of Autonomous Mobile Robots (자율이동로봇의 행동진화를 위한 진화하드웨어 설계)

  • 이동욱;반창봉;전호병;심귀보
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.254-254
    • /
    • 2000
  • This paper presents a genetic programming based evolutionary strategy for on-line adaptive learnable evolvable hardware. genetic programming can be useful control method for evolvable hardware for its unique tree structured chromosome. However it is difficult to represent tree structured chromosome on hardware, and it is difficult to use crossover operator on hardware. Therefore, genetic programming is not so popular as genetic algorithms in evolvable hardware community in spite of its possible strength. We propose a chromosome representation methods and a hardware implementation method that can be helpful to this situation. Our method uses context switchable identical block structure to implement genetic tree on evolvable hardware. We composed an evolutionary strategy (or evolvable hardware by combining proposed method with other's striking research results. Proposed method is applied to the autonomous mobile robots cooperation problem to verify its usefulness.

  • PDF

Fast 3D Model Extraction Algorithm with an Enhanced PBIL of Preserving Depth Consistency (깊이 일관성을 보존하는 향상된 개체군기반 증가 학습을 이용한 고속 3차원 모델 추출 기법)

  • 이행석;장명호;한규필
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.1_2
    • /
    • pp.59-66
    • /
    • 2004
  • In this paper, a fast 3D model extraction algorithm with an enhanced PBIL of preserving depth consistency is proposed for the extraction of 3D depth information from 2D images. Evolutionary computation algorithms are efficient search methods based on natural selection and population genetics. 2D disparity maps acquired by conventional matching algorithms do not match well with the original image profile in disparity edge regions because of the loss of fine and precise information in the regions. Therefore, in order to decrease the imprecision of disparity values and increase the quality of matching, a compact genetic algorithm is adapted for matching environments, and the adaptive window, which is controlled by the complexity of neighbor disparities in an abrupt disparity point is used. As the result, the proposed algorithm showed more correct and precise disparities were obtained than those by conventional matching methods with relaxation scheme.

A New Multi-objective Evolutionary Algorithm for Inter-Cloud Service Composition

  • Liu, Li;Gu, Shuxian;Fu, Dongmei;Zhang, Miao;Buyya, Rajkumar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.1-20
    • /
    • 2018
  • Service composition in the Inter-Cloud raises new challenges that are caused by the different Quality of Service (QoS) requirements of the users, which are served by different geo-distributed Cloud providers. This paper aims to explore how to select and compose such services while considering how to reach high efficiency on cost and response time, low network latency, and high reliability across multiple Cloud providers. A new hybrid multi-objective evolutionary algorithm to perform the above task called LS-NSGA-II-DE is proposed, in which the differential evolution (DE) algorithm uses the adaptive mutation operator and crossover operator to replace the those of the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) to get the better convergence and diversity. At the same time, a Local Search (LS) method is performed for the Non-dominated solution set F{1} in each generation to improve the distribution of the F{1}. The simulation results show that our proposed algorithm performs well in terms of the solution distribution and convergence, and in addition, the optimality ability and scalability are better compared with those of the other algorithms.

Utilizing Soft Computing Techniques in Global Approximate Optimization (전역근사최적화를 위한 소프트컴퓨팅기술의 활용)

  • 이종수;장민성;김승진;김도영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.449-457
    • /
    • 2000
  • The paper describes the study of global approximate optimization utilizing soft computing techniques such as genetic algorithms (GA's), neural networks (NN's), and fuzzy inference systems(FIS). GA's provide the increasing probability of locating a global optimum over the entire design space associated with multimodality and nonlinearity. NN's can be used as a tool for function approximations, a rapid reanalysis model for subsequent use in design optimization. FIS facilitates to handle the quantitative design information under the case where the training data samples are not sufficiently provided or uncertain information is included in design modeling. Properties of soft computing techniques affect the quality of global approximate model. Evolutionary fuzzy modeling (EFM) and adaptive neuro-fuzzy inference system (ANFIS) are briefly introduced for structural optimization problem in this context. The paper presents the success of EFM depends on how optimally the fuzzy membership parameters are selected and how fuzzy rules are generated.

  • PDF

Physics-based Surrogate Optimization of Francis Turbine Runner Blades, Using Mesh Adaptive Direct Search and Evolutionary Algorithms

  • Bahrami, Salman;Tribes, Christophe;von Fellenberg, Sven;Vu, Thi C.;Guibault, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.3
    • /
    • pp.209-219
    • /
    • 2015
  • A robust multi-fidelity optimization methodology has been developed, focusing on efficiently handling industrial runner design of hydraulic Francis turbines. The computational task is split between low- and high-fidelity phases in order to properly balance the CFD cost and required accuracy in different design stages. In the low-fidelity phase, a physics-based surrogate optimization loop manages a large number of iterative optimization evaluations. Two derivative-free optimization methods use an inviscid flow solver as a physics-based surrogate to obtain the main characteristics of a good design in a relatively fast iterative process. The case study of a runner design for a low-head Francis turbine indicates advantages of integrating two derivative-free optimization algorithms with different local- and global search capabilities.