가버 웨이브릿을 이용한 얼굴 그래프기반 안면 인식 알고리즘들은 우수한 인식 성능을 갖고 있지만 계산양이 많고 초기 그래프 위치에 따라 성능이 달라지는 등의 문제점들이 있다. 본 연구에서는 이를 개선하여 가버 피쳐기반 기하학적 가변형 얼굴 그래프 매칭방식을 이용한 완전 자동 안면 인식 알고리즘을 제안하였다. Adaboost를 이용해서 얼굴을 검출하고 얼굴 그래프의 초기 정합 위치와 크기를 결정하였다. 얼굴 그래프를 기하학적으로 가변시켜 가면서 얼굴 모델 그래프와 유사도가 가장 높은 얼굴 그래프를 고속으로 찾기 위해 매개변수들을 정의하고 최적화 알고리즘을 이용하여 최적 얼굴 그래프를 추출하였다. 제안한 알고리즘을 FERET 데이터베이스의 인식에 적용해 본 결과 96.7%의 인식률로서 기존 연구들에 비해 우수한 결과를 얻을 수 있었고 평균 0.26초의 인식 속도로서 실시간 적용이 가능함을 확인하였다.
웨어러블 컴퓨터의 개발로 인해 인간과 컴퓨터간의 전통적인 인터페이스는 점차 사용하기 불편하게 되었고 이는 새로운 형태의 인터페이스에 대한 요구로 이어지게 되었다. 본 논문에서는 이러한 추세에 맞추어 디지털 카메라를 통해 인간의 제스처를 인식하는 새로운 인터페이스를 연구하였다. 카메라를 통해 손 제스처를 인식하는 방법은 빛과 같은 주변 환경에 영향을 받기 때문에 탐지기는 덜 민감해야 한다. 최근에 Viola 탐지기는 얼굴 탐지에 좋은 결과를 보여 주었으며, 이는 적분 이미지로부터 추출한 하얼 특징을 이용한 Adaboost 학습 알고리즘을 사용하였다. 본 논문에서는 이 방법을 손 영역 탐지에 적용하였으며 피부색을 이용한 고전적인 방법들과 비교 실험을 수행하였다. 실험 결과는 빛과 같은 방해 요소가 있는 환경에서 Viola 탐지기가 피부색을 이용한 탐지 방법보다 더 견고함을 보여 주었다.
본 논문에서는 비디오 검색을 위한 새로운 얼굴 검출 및 인식 방법을 제안한다. 인물 정함은 비디오 프레임에서 어떻게 얼굴을 정확하게 찾아내는가에 달려 있다. 얼굴 영역은 Adaboost 알고리즘으로 부스트된 viola-jones의 특징을 이용하여 비디오 프레임에서 검출한다. 얼굴 검출 후 조명 보정을 하고 PCA(Principal Component Analysis)로 특징점을 추출하고 SVM(Support Vector Machine)으로 사람의 신원을 분류한다. 실험 결과 제안한 방법이 정합율면에서 우수한 성능을 보였다.
International Journal of Internet, Broadcasting and Communication
/
제10권4호
/
pp.50-64
/
2018
This paper describes a visual object detection approach utilizing ensemble based machine learning. Object detection methods employing 1D features have the benefit of fast calculation speed. However, for real image with complex background, detection accuracy and performance are degraded. In this paper, we propose an ensemble learning algorithm that combines a 1D feature classifier and 2D DNF (Disjunctive Normal Form) classifier to improve the object detection performance in a single input image. Also, to improve the computing efficiency and accuracy, we propose a feature selecting method to reduce the computing time and ensemble algorithm by combining the 1D features and 2D DNF features. In the verification experiments, we selected the Haar-like feature as the 1D image descriptor, and demonstrated the performance of the algorithm on a few datasets such as face and vehicle.
In this paper, we have applied a real-time face processor includes detection, recognition, and learning to a intelligent store management service robot. We use the Haar classifier and adaboost learning algorithm for face detection. For face recognition and learning, a PCA algorithm and a SVDD algorithm is used. We have developed a store management service robot and applied these algorithms to verify the performance.
본 논문에서는 RGB영상과 깊이영상을 사용하여 얼굴검출 및 추적을 고속으로 수행할 수 있는 방법을 제안한다. 이 방법은 얼굴검출 과정과 얼굴추적 과정으로 구성되며, 얼굴검출 과정은 기본적으로 기존의 Adaboost 방법을 사용하나, 깊이영상을 사용하여 탐색영역을 축소한다. 얼굴추적은 템플릿 매칭방법을 사용하며, 조기종료 기법을 사용하여 수행시간을 줄였다. 이 방법들을 구현하여 실험한 결과, 얼굴검출 방법은 기존의 방법에 비해 약 39%의 수행시간을 보였으며, 얼굴추적 방법은 $640{\times}480$ 해상도의 프레임 당 2.48ms의 추적시간을 보였다. 또한 검출율에 있어서도 제안한 얼굴검출 방법은 기존의 방법에 비해 약간 낮은 검출률을 보였으나, 얼굴로 인식하였지만 실제로는 얼굴이 아닌 경우의 오검출률에 있어서는 기존방법의 약 38% 향상된 성능을 보였다. 또한 얼굴추적 방법은 추적시간과 추적 정확도에 있어서 상보적인 관계를 가지며, 특별한 경우를 제외한 모든 경우에서 약 1%의 낮은 추적오차율을 보였다. 따라서 제안한 얼굴검출 및 추적방법은 각각 또는 결합하여 고속 동작과 높은 정확도를 필요로 하는 응용분야에 사용될 수 있을 것으로 기대된다.
얼굴은 사람을 확인할 수 있는 고유한 성질을 갖고 있어 얼굴 인식이 출입통제, 범죄자 검색, 방법용 CCTV 같은 보안 영역과 본인 인증 영역에 활발히 활용되고 있다. 정면 얼굴 영상은 가장 많은 얼굴 정보를 갖고 있어 얼굴 인식을 위해 가능한 정면 얼굴 영상을 취득하는 것이 필요하다. 본 연구에서 하르유사 특징을 이용한 Adaboost 알고리즘을 이용해 얼굴 영역이 검출되고 mean-shift 알고리즘을 이용해 얼굴을 추적한다. 그리고 얼굴 영역에서 눈과 입 같은 얼굴 요소들의 특징점들을 추출해 그들의 기하학적인 정보를 이용해 두 눈의 비와 얼굴의 회전 정도를 계산하고 실시간으로 근사 정면 얼굴 영상을 제시한다.
본 연구에서는 영상처리 기술을 활용한 치과용 로봇 조명장치를 개발하여 그 정확도를 측정하여 보고자 한다. 본 연구를 통해 개발된 치과용 로봇 조명장치는 환자의 얼굴을 카메라로 인식을 하여 구강의 위치를 찾아 로봇이 움직여 라이트를 비추게 하는 것으로서 모션 제어 부, 라이트 제어 부, 영상 처리부로 구성되어 있다. 카메라로 영상을 획득 후 동작변화 영상을 추출 한 다음 아다부스트 알고리즘(Adaboost algorithm)을 통해, 얼굴 검출에 필요한 특징을 추출하여 실시간으로 얼굴 영역을 검출하도록 하였다. 영상처리를 통한 환자 구강의 추출 실험 시 정면영상에서 높은 얼굴인식률을 나타냈고 얼굴영역이 인식이 되면, 안정적인 라이트 로봇 암(Light robot arm)의 제어가 가능했다.
현대 사회에서 상업적 성공을 위해서는 상권 분석이 필요하며, 상권 분석의 요소 중에서 핵심적인 부분은 통행량이다. 통행량을 측정하기 위해서 사람이 직접 측정하는 방법이 많이 사용되고 있으나 높은 인건비와 측정 실수를 유발할 가능성이 높다. 본 논문에서는 웹캠을 통해 촬영한 이미지를 이용하여 보행자의 통행량을 측정할 수 있는 알고리즘을 제안한다. 제안하는 알고리즘은 사람 영역 탐지와 움직임 추적으로 구성되어 있다. 사람 영역 탐지에서는 움직임 영역을 추출하고 HoG 특징과 Adaboost 분류기를 이용하여 사람 영역을 탐지한다. 움직임 추적에는 멀티 레벨 매칭과 거짓 양성 제거를 이용하여 추적 및 통행량을 측정한다. 멀티 레벨 매칭은 HoG 영역에 대해 유사도 계수를 구하여 판별하는 과정, 칼만 필터를 이용하여 추정한 위치의 이미지 유사도를 계산 과정, 사람 영역 탐지에서 추출한 움직임 영역을 이용해 유사도를 계산하는 3단계 과정으로 구성되어 있다. 거짓 양성 제거는 사람 영역 탐지에서 잘못된 탐지 영역을 제거한다. 제안한 알고리즘의 성능을 분석하기 위하여 기존의 사람 영역 탐지 및 추적하는 방법과 비교 실험을 수행하였다. 그 결과 제안하는 방법은 사람 통행량 측정에서 83.6% 정확도를 보였으며, 기존 알고리즘에 비하여 11% 높은 성능을 달성하였다.
Journal of the Korean Data and Information Science Society
/
제25권6호
/
pp.1283-1291
/
2014
본 논문에서는 대용량이거나 시간에 따라 순차적으로 들어오는 데이터의 분류를 위한 전진적 단계 알고리즘을 제안한다. Adaboost 알고리즘은 노이즈가 있는 데이터에 대하여 성능이 떨어지는 것으로 알려져 있다. 이를 해결하기 위한 한 가지 방법으로 전진적 단계 선형 회귀 방법을 사용한다. 대용량 데이터나 순차적 배치 데이터의 경우에도 이러한 상황을 극복하기 위해 전진적 단계 알고리즘 방법을 적용한 방법을 제안한다. 모의실험과 실제 자료 분석을 통해 제안된 알고리즘이 좋은 성능을 보임을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.