• 제목/요약/키워드: adaboost algorithm

검색결과 106건 처리시간 0.023초

가버 피쳐기반 얼굴 그래프를 이용한 완전 자동 안면 인식 알고리즘 (Fully Automatic Facial Recognition Algorithm By Using Gabor Feature Based Face Graph)

  • 김진호
    • 한국콘텐츠학회논문지
    • /
    • 제11권2호
    • /
    • pp.31-39
    • /
    • 2011
  • 가버 웨이브릿을 이용한 얼굴 그래프기반 안면 인식 알고리즘들은 우수한 인식 성능을 갖고 있지만 계산양이 많고 초기 그래프 위치에 따라 성능이 달라지는 등의 문제점들이 있다. 본 연구에서는 이를 개선하여 가버 피쳐기반 기하학적 가변형 얼굴 그래프 매칭방식을 이용한 완전 자동 안면 인식 알고리즘을 제안하였다. Adaboost를 이용해서 얼굴을 검출하고 얼굴 그래프의 초기 정합 위치와 크기를 결정하였다. 얼굴 그래프를 기하학적으로 가변시켜 가면서 얼굴 모델 그래프와 유사도가 가장 높은 얼굴 그래프를 고속으로 찾기 위해 매개변수들을 정의하고 최적화 알고리즘을 이용하여 최적 얼굴 그래프를 추출하였다. 제안한 알고리즘을 FERET 데이터베이스의 인식에 적용해 본 결과 96.7%의 인식률로서 기존 연구들에 비해 우수한 결과를 얻을 수 있었고 평균 0.26초의 인식 속도로서 실시간 적용이 가능함을 확인하였다.

AdaBoost 학습 알고리즘과 칼만 필터를 이용한 손 영역 탐지 및 추적 (An Application of AdaBoost Learning Algorithm and Kalman Filter to Hand Detection and Tracking)

  • 김병만;김준우;이광호
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권4호
    • /
    • pp.47-56
    • /
    • 2005
  • 웨어러블 컴퓨터의 개발로 인해 인간과 컴퓨터간의 전통적인 인터페이스는 점차 사용하기 불편하게 되었고 이는 새로운 형태의 인터페이스에 대한 요구로 이어지게 되었다. 본 논문에서는 이러한 추세에 맞추어 디지털 카메라를 통해 인간의 제스처를 인식하는 새로운 인터페이스를 연구하였다. 카메라를 통해 손 제스처를 인식하는 방법은 빛과 같은 주변 환경에 영향을 받기 때문에 탐지기는 덜 민감해야 한다. 최근에 Viola 탐지기는 얼굴 탐지에 좋은 결과를 보여 주었으며, 이는 적분 이미지로부터 추출한 하얼 특징을 이용한 Adaboost 학습 알고리즘을 사용하였다. 본 논문에서는 이 방법을 손 영역 탐지에 적용하였으며 피부색을 이용한 고전적인 방법들과 비교 실험을 수행하였다. 실험 결과는 빛과 같은 방해 요소가 있는 환경에서 Viola 탐지기가 피부색을 이용한 탐지 방법보다 더 견고함을 보여 주었다.

  • PDF

비디오 검색을 위한 얼굴 검출 및 인식 (Face Detection and Recognition for Video Retrieval)

  • 이슬람 모하마드 카이룰;이형진;폴 안잔 쿠마;백중환
    • 한국항행학회논문지
    • /
    • 제12권6호
    • /
    • pp.691-698
    • /
    • 2008
  • 본 논문에서는 비디오 검색을 위한 새로운 얼굴 검출 및 인식 방법을 제안한다. 인물 정함은 비디오 프레임에서 어떻게 얼굴을 정확하게 찾아내는가에 달려 있다. 얼굴 영역은 Adaboost 알고리즘으로 부스트된 viola-jones의 특징을 이용하여 비디오 프레임에서 검출한다. 얼굴 검출 후 조명 보정을 하고 PCA(Principal Component Analysis)로 특징점을 추출하고 SVM(Support Vector Machine)으로 사람의 신원을 분류한다. 실험 결과 제안한 방법이 정합율면에서 우수한 성능을 보였다.

  • PDF

Performance Improvement of Classifier by Combining Disjunctive Normal Form features

  • Min, Hyeon-Gyu;Kang, Dong-Joong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제10권4호
    • /
    • pp.50-64
    • /
    • 2018
  • This paper describes a visual object detection approach utilizing ensemble based machine learning. Object detection methods employing 1D features have the benefit of fast calculation speed. However, for real image with complex background, detection accuracy and performance are degraded. In this paper, we propose an ensemble learning algorithm that combines a 1D feature classifier and 2D DNF (Disjunctive Normal Form) classifier to improve the object detection performance in a single input image. Also, to improve the computing efficiency and accuracy, we propose a feature selecting method to reduce the computing time and ensemble algorithm by combining the 1D features and 2D DNF features. In the verification experiments, we selected the Haar-like feature as the 1D image descriptor, and demonstrated the performance of the algorithm on a few datasets such as face and vehicle.

상점 관리 서비스 로봇에서의 실시간 얼굴 인식 및 학습 시스템 (Real-Time Face Recognition and learning system for intelligent Store Management Service Robot)

  • 안호석;강우성;나진희;최진영
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.935-936
    • /
    • 2006
  • In this paper, we have applied a real-time face processor includes detection, recognition, and learning to a intelligent store management service robot. We use the Haar classifier and adaboost learning algorithm for face detection. For face recognition and learning, a PCA algorithm and a SVDD algorithm is used. We have developed a store management service robot and applied these algorithms to verify the performance.

  • PDF

깊이정보를 이용한 고속 고정밀 얼굴검출 및 추적 방법 (A Fast and Accurate Face Detection and Tracking Method by using Depth Information)

  • 배윤진;최현준;서영호;김동욱
    • 한국통신학회논문지
    • /
    • 제37권7A호
    • /
    • pp.586-599
    • /
    • 2012
  • 본 논문에서는 RGB영상과 깊이영상을 사용하여 얼굴검출 및 추적을 고속으로 수행할 수 있는 방법을 제안한다. 이 방법은 얼굴검출 과정과 얼굴추적 과정으로 구성되며, 얼굴검출 과정은 기본적으로 기존의 Adaboost 방법을 사용하나, 깊이영상을 사용하여 탐색영역을 축소한다. 얼굴추적은 템플릿 매칭방법을 사용하며, 조기종료 기법을 사용하여 수행시간을 줄였다. 이 방법들을 구현하여 실험한 결과, 얼굴검출 방법은 기존의 방법에 비해 약 39%의 수행시간을 보였으며, 얼굴추적 방법은 $640{\times}480$ 해상도의 프레임 당 2.48ms의 추적시간을 보였다. 또한 검출율에 있어서도 제안한 얼굴검출 방법은 기존의 방법에 비해 약간 낮은 검출률을 보였으나, 얼굴로 인식하였지만 실제로는 얼굴이 아닌 경우의 오검출률에 있어서는 기존방법의 약 38% 향상된 성능을 보였다. 또한 얼굴추적 방법은 추적시간과 추적 정확도에 있어서 상보적인 관계를 가지며, 특별한 경우를 제외한 모든 경우에서 약 1%의 낮은 추적오차율을 보였다. 따라서 제안한 얼굴검출 및 추적방법은 각각 또는 결합하여 고속 동작과 높은 정확도를 필요로 하는 응용분야에 사용될 수 있을 것으로 기대된다.

얼굴 특징점들을 이용한 근사 정면 얼굴 영상 검출 (Approximate Front Face Image Detection Using Facial Feature Points)

  • 김수진;정용석;오정수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.675-678
    • /
    • 2018
  • 얼굴은 사람을 확인할 수 있는 고유한 성질을 갖고 있어 얼굴 인식이 출입통제, 범죄자 검색, 방법용 CCTV 같은 보안 영역과 본인 인증 영역에 활발히 활용되고 있다. 정면 얼굴 영상은 가장 많은 얼굴 정보를 갖고 있어 얼굴 인식을 위해 가능한 정면 얼굴 영상을 취득하는 것이 필요하다. 본 연구에서 하르유사 특징을 이용한 Adaboost 알고리즘을 이용해 얼굴 영역이 검출되고 mean-shift 알고리즘을 이용해 얼굴을 추적한다. 그리고 얼굴 영역에서 눈과 입 같은 얼굴 요소들의 특징점들을 추출해 그들의 기하학적인 정보를 이용해 두 눈의 비와 얼굴의 회전 정도를 계산하고 실시간으로 근사 정면 얼굴 영상을 제시한다.

  • PDF

영상처리 기술을 이용한 치과용 로봇 조명장치의 개발 (Development of Dental Light Robotic System using Image Processing Technology)

  • 문현일;김명남;이규복
    • 구강회복응용과학지
    • /
    • 제26권3호
    • /
    • pp.285-296
    • /
    • 2010
  • 본 연구에서는 영상처리 기술을 활용한 치과용 로봇 조명장치를 개발하여 그 정확도를 측정하여 보고자 한다. 본 연구를 통해 개발된 치과용 로봇 조명장치는 환자의 얼굴을 카메라로 인식을 하여 구강의 위치를 찾아 로봇이 움직여 라이트를 비추게 하는 것으로서 모션 제어 부, 라이트 제어 부, 영상 처리부로 구성되어 있다. 카메라로 영상을 획득 후 동작변화 영상을 추출 한 다음 아다부스트 알고리즘(Adaboost algorithm)을 통해, 얼굴 검출에 필요한 특징을 추출하여 실시간으로 얼굴 영역을 검출하도록 하였다. 영상처리를 통한 환자 구강의 추출 실험 시 정면영상에서 높은 얼굴인식률을 나타냈고 얼굴영역이 인식이 되면, 안정적인 라이트 로봇 암(Light robot arm)의 제어가 가능했다.

HoG 특징 기반 사람 탐지와 멀티레벨 매칭 추적을 이용한 보행자 통행량 측정 알고리즘 (Pedestrian Traffic Counting Using HoG Feature-Based Person Detection and Multi-Level Match Tracking)

  • 강성욱;정진동;서홍일;이해연
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권8호
    • /
    • pp.385-392
    • /
    • 2016
  • 현대 사회에서 상업적 성공을 위해서는 상권 분석이 필요하며, 상권 분석의 요소 중에서 핵심적인 부분은 통행량이다. 통행량을 측정하기 위해서 사람이 직접 측정하는 방법이 많이 사용되고 있으나 높은 인건비와 측정 실수를 유발할 가능성이 높다. 본 논문에서는 웹캠을 통해 촬영한 이미지를 이용하여 보행자의 통행량을 측정할 수 있는 알고리즘을 제안한다. 제안하는 알고리즘은 사람 영역 탐지와 움직임 추적으로 구성되어 있다. 사람 영역 탐지에서는 움직임 영역을 추출하고 HoG 특징과 Adaboost 분류기를 이용하여 사람 영역을 탐지한다. 움직임 추적에는 멀티 레벨 매칭과 거짓 양성 제거를 이용하여 추적 및 통행량을 측정한다. 멀티 레벨 매칭은 HoG 영역에 대해 유사도 계수를 구하여 판별하는 과정, 칼만 필터를 이용하여 추정한 위치의 이미지 유사도를 계산 과정, 사람 영역 탐지에서 추출한 움직임 영역을 이용해 유사도를 계산하는 3단계 과정으로 구성되어 있다. 거짓 양성 제거는 사람 영역 탐지에서 잘못된 탐지 영역을 제거한다. 제안한 알고리즘의 성능을 분석하기 위하여 기존의 사람 영역 탐지 및 추적하는 방법과 비교 실험을 수행하였다. 그 결과 제안하는 방법은 사람 통행량 측정에서 83.6% 정확도를 보였으며, 기존 알고리즘에 비하여 11% 높은 성능을 달성하였다.

전진적 단계 알고리즘을 이용한 대용량 데이터와 순차적 배치 데이터의 분류 (Classification of large-scale data and data batch stream with forward stagewise algorithm)

  • 윤영주
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권6호
    • /
    • pp.1283-1291
    • /
    • 2014
  • 본 논문에서는 대용량이거나 시간에 따라 순차적으로 들어오는 데이터의 분류를 위한 전진적 단계 알고리즘을 제안한다. Adaboost 알고리즘은 노이즈가 있는 데이터에 대하여 성능이 떨어지는 것으로 알려져 있다. 이를 해결하기 위한 한 가지 방법으로 전진적 단계 선형 회귀 방법을 사용한다. 대용량 데이터나 순차적 배치 데이터의 경우에도 이러한 상황을 극복하기 위해 전진적 단계 알고리즘 방법을 적용한 방법을 제안한다. 모의실험과 실제 자료 분석을 통해 제안된 알고리즘이 좋은 성능을 보임을 알 수 있었다.