• Title/Summary/Keyword: acyltransferase

Search Result 131, Processing Time 0.037 seconds

Pheophorbide A-methyl Ester, Acyl-CoA: Cholesterol Acyltransferase Inhibitor from Diospyros kaki

  • Rho, Mun-Chual;Chung, Mi-Yeon;Song, Hye-Young;Kwon, Oh-Eok;Lee, Seung-Woong;Baek, Jin-Ah;Jeune, Kyung-Hee;Kim, Koan-Hoi;Lee, Hyun-Sun;Kim, Young-Kook
    • Archives of Pharmacal Research
    • /
    • v.26 no.9
    • /
    • pp.716-718
    • /
    • 2003
  • In the course of our search for Acyl-CoA: cholesterol acyltransferase (ACAT) inhibitors from natural sources, a new type of ACAT inhibitor was isolated from a methanol extract of Diospyros kaki. On the basis of spectral and structural evidence, the compound was identified as pheophorbide A-methyl ester. Pheophorbide A-methyl ester inhibited ACAT activity in a dose dependent manner with an $IC_{50}$ value of 1.85 $\mu$ g/mL.

Acyltransferases for production of industrial oils in transgenic plants (식물의 산업용 지방산 생산을 위한 오일합성 유전자의 기능과 이용 전망)

  • Kim, Hyun-Uk;Lee, Kyeong-Ryeol;Park, Jong-Sug;Roh, Kyung-Hee;Kim, Sun-Hee;Kim, Jong-Bum
    • Journal of Plant Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.220-227
    • /
    • 2010
  • Fatty acids in seed oil from plants are essential for human nutrients and have been used for industrial purpose. The growing demands of seed oil as food resources and feedstocks for industrial uses have attempted to modify fatty acid composition and to increase oil content in transgenic plants. However, production of unusual fatty acids in transgenic plants are limited, which is not synthesized the level same as original plants. This bottleneck was common for production of several unusual fatty acids in transgenic plants and suggests that there is different for substrate preference in oil metabolic pathway enzymes between host oil plants and original wild plants. Review of acyltransferases involved in acyl-editing and seed oil accumulation of oil plant and wild-plant producing unusual fatty acids will design strategies to maximize the production of unusual fatty acids in transgenic plants. In here, we identified eleven acyltransferase genes in castor based on sequence homology, which will be useful to increase hydroxy unusual fatty acids in transgenic plants.

Distribution and Characterization of the Neurosteroid Acyltransferase from the Bovine Brain (소의 뇌에서 Neurosteroid Acyltransferase의 분포 및 특성에 관한 연구)

  • Park, In-Ho;Jo, Sung-Jun;Jo, Do-Hyun
    • Applied Biological Chemistry
    • /
    • v.40 no.2
    • /
    • pp.112-116
    • /
    • 1997
  • The enzymatic properties as well as its distribution in the cerebral region and subcellular organells were investigated for the neurosteroid acyltransferase from the bovine brain, which synthesize the fatty acid esters of the neurosteroids. The cerebellum region was the highest in NSAT activity while the cerebrum was the lowest with 50% of the cerebellar activity. The NSAT was found to be mainly localized in the microsomal fraction. The optimal temperature and pH were $40^{\circ}C$ and 4.9, respectively. When $^3H-DHEA$ was utilized as substrate, the $K_m$ and $V_{max}$ was $32.6\;{\mu}M$ and 4.86 nmole/mg protein/h, respectively. Under the same condition pregnenolone$({\Delta}^5P)$ was a competitive inhibitor with $K_i=22.8\;{\mu}M$ and testosterone was a uncompetitive inhibitor with $K_i=22.8\;{\mu}M$. This may suggest that the NSAT has a different conformation in the acylation of the ${\beta}-hydroxyl$ group at C-3 and C-17.

  • PDF

Screening of Microorganisms Having ACAT Inhibitor Activity from Soil and Characterization of AI-3, ACAT Inhibitor Produced by Streptomyces sp. A-3 (토양으로부터 ACAT 저해활성을 나타내는 미생물의 탐색과 방선균이 생산하는 ACAT 저해물질, AI-3의 특성)

  • 정태숙;김성욱;이항우;손광희;권용욱;최명언;복성해
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.6
    • /
    • pp.600-608
    • /
    • 1993
  • About 1, 300 strains isolated from soil were evaluated for acyl-CoA:cholesterol acyltransferase (ACAT) inhibition activity. About 4.0% of actinomycetes and 3.6% of fungi showed greater than 50% inhibition activity, respectively. However, none of the isolated bacteria exhibited inhibition activity more than 50%. Among them, one Streptomyces sp. A-3 showed a higher ACAT inhibition activity in culture broth. Isolation of the ACAT inhibitor (AI-3) was achieved by Amberlite XAD-7 column, silica-gel column, Sephadex LH-20 gel-filtration and reverse phase HPLC.

  • PDF

Diacylglycerol Acyltransferase Inhibitors from the Fruits of Evodia rutaecarpa and the Root of Salvia miltiorrhiza

  • Ko, Jeong-Suk;Chung, Mi-Yeon;Ryu , Shi-Young;Kang, Jong-Seong;Rho, Mun-Chual;Lee, Hyun-Sun;Kim, Young-Kook
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.375.4-376
    • /
    • 2002
  • Acyl CoA:diacylglycerol acyltransferase (DGAT) is a key enzyme involved in triacylglycerol synthesis. Too much accumulation of triacylglycerol in certain organs and tissues of the body causes high risk conditions of fatty liver. obesity and hypertriglyceridemia. leading to serious diseases of atherosclerosis. Therefore, DGAT inhibition may be worthwhile strategy for the treatment of triglyceride metabolism disorders. such as obesity or hypertriglyceridemia. (omitted)

  • PDF

ACAT Inhibition of Polyactylenes from Gymnaster koraiensis

  • Jung, Hyun-Ju;Hung, Tran-Manh;Na, Min-Kyun;Min, Byung-Sun;Kwon, Byoung-Mog;Bae, Ki-Hwan
    • Natural Product Sciences
    • /
    • v.15 no.2
    • /
    • pp.110-113
    • /
    • 2009
  • Acyl-coenzyme A: cholesterol acyltransferase (ACAT) catalyzes cholesterol esterification and plays important roles in intestinal absorption of cholesterol, hepatic production of lipoproteins and accumulation of cholesteryl ester within macrophages and smooth muscle cells. In our study, eight polyacetylenes (1 - 8), were isolated from the roots of Gymnaster koraiensis, and their chemical structures were identified on the basis of spectroscopic analysis and mass. Compound 2 with the (10S)-15,16-epoxy group in skeleton strongly inhibited ACAT enzyme with $IC_{50}$ value of 35.8 ${\mu}g$/mL, meanwhile the other compounds displayed significant inhibition of ACAT enzyme with the $IC_{50}$ values from 45.5 to 55.1 ${\mu}g$/mL.

Monoacylglycerol O-acyltransferase 1 (MGAT1) localizes to the ER and lipid droplets promoting triacylglycerol synthesis

  • Lee, Yoo Jeong;Kim, Jae-woo
    • BMB Reports
    • /
    • v.50 no.7
    • /
    • pp.367-372
    • /
    • 2017
  • Monoacylglycerol acyltransferase 1 (MGAT) is a microsomal enzyme that catalyzes the synthesis of diacylglycerol (DAG) and triacylglycerol (TAG). However, the subcellular localization and catalytic function domain of this enzyme is poorly understood. In this report, we identified that murine MGAT1 localizes to the endoplasmic reticulum (ER) under normal conditions, whereas MGAT1 co-localize to the lipid droplets (LD) under conditions of enriching fatty acids, contributing to TAG synthesis and LD expansion. For the enzyme activity, both the N-terminal transmembrane domain and catalytic HPHG motif are required. We also show that the transmembrane domain of MGAT1 consists of two hydrophobic regions in the N-terminus, and the consensus sequence FLXLXXXn, a putative neutral lipid-binding domain, exists in the first transmembrane domain. Finally, MGAT1 interacts with DGAT2, which serves to synergistically increase the TAG biosynthesis and LD expansion, leading to enhancement of lipid accumulation in the liver and fat.

Inhibition of de Novo Sphingolipid Biosynthesis by Geranyllinalool in $LLC-PK_1$ Cells (Geranyllinalool에 의한 LLC-PK1 세포내 스핑고지질 생합성 억제)

  • 조양혁;이용문
    • YAKHAK HOEJI
    • /
    • v.43 no.1
    • /
    • pp.61-67
    • /
    • 1999
  • Geranyllinalool, a polyisoprenoid compound, was found to block the early biosynthetic pathway of sphingolipids in LLC-PKl cells. Sphinganine, an intermediate in sphingolipid biosynthetic pathway, was abruptly accumulated in LLC-PKl cells at $2{\;}{\mu}M$ of fumonisin B1(FB1), a specific inhibitor of sphinganine N-acyltransferase, for 24 hr. Geranyllinalool lowered the $B_1(FB_1)$, a specific inhibitor of sphinganine N-acyltransferase, for 24 hr. Geranyllinalool lowered th FB1 and $50{\;}\mu$M geranyllinalool. l-Cy-closerine, an inhibitor of serine-palmitoyl transferase, was used as a positive control to evaluate the inhibitory effect of geranyllinalool. These results suggest that geranyllinalool may inhibit the serine-palmitoyl transferase, the first enzyme in de novo sphingolipid biosynthesis, resulting in the altered regulation of sphingolipid metabolism.

  • PDF

Prenylated Flavonoids, Inhibitors of Diacylglycerol Acyltransferase by the root of Sophora flavescens

  • Chung, Mi-Yeon;Ko, Jeong-Suk;Ryu, Shi-Young;Jeune, Kyung-Hee;Kim, Koan-Hoi;Rho, Mun-Chual;Lee, Hyun-Sun;Kim, Young-Kook
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.267.1-267.1
    • /
    • 2003
  • Diacylglycerol acyltransferase (DGAT) is a microsomal enzyme that plays a central role in the metabolism of cellular glycerolipid. Recently, the generation of DGA T-deficient mice has provided a better understanding of triglyceride synthesis and its relationship to obesity. Therefore DGAT is an attractive target for treatments of triglyceride metabolism disorders, such as obesity or hypertriglyceridemia. (omitted)

  • PDF