• Title/Summary/Keyword: active vision

Search Result 277, Processing Time 0.024 seconds

Active vision을 이용한 곡면의 형상정보 획득 및 NC가공 시스템

  • 손영태;최영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.256-261
    • /
    • 1992
  • Acquisition of 3D points is an essential process for modelling of physical 3D objects. Although Coordinate Measuring Machine(CMM) is most accurate for this purpose, it is very time consuming. To enhance the data aquisition speed for scuptured surfaces, active vision with reflecctometric method was used for our system. A fter the data acquisition, the system automatically generates cutting tool path for the 3-axis milling of the object. The fullyintegrated system from the data acquisition to the NC-code generation was implemented with IBN-PC/386 and necessary hardwears.

A Study on IMM-PDAF based Sensor Fusion Method for Compensating Lateral Errors of Detected Vehicles Using Radar and Vision Sensors (레이더와 비전 센서를 이용하여 선행차량의 횡방향 운동상태를 보정하기 위한 IMM-PDAF 기반 센서융합 기법 연구)

  • Jang, Sung-woo;Kang, Yeon-sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.8
    • /
    • pp.633-642
    • /
    • 2016
  • It is important for advanced active safety systems and autonomous driving cars to get the accurate estimates of the nearby vehicles in order to increase their safety and performance. This paper proposes a sensor fusion method for radar and vision sensors to accurately estimate the state of the preceding vehicles. In particular, we performed a study on compensating for the lateral state error on automotive radar sensors by using a vision sensor. The proposed method is based on the Interactive Multiple Model(IMM) algorithm, which stochastically integrates the multiple Kalman Filters with the multiple models depending on lateral-compensation mode and radar-single sensor mode. In addition, a Probabilistic Data Association Filter(PDAF) is utilized as a data association method to improve the reliability of the estimates under a cluttered radar environment. A two-step correction method is used in the Kalman filter, which efficiently associates both the radar and vision measurements into single state estimates. Finally, the proposed method is validated through off-line simulations using measurements obtained from a field test in an actual road environment.

Development of Active Stereo Surveillance System with the Human-like Visual Selective Attention (인체의 상향식 선택적 주의 집중 시각 기능을 모방한 능동 스테레오 감시 시스템의 개발)

  • Jung, Bum-Soo;Lee, Min-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.144-151
    • /
    • 2004
  • In this paper, we propose an active stereo surveillance system with human-like convergence function. The proposed system uses a bottom-up saliency map model with the human-like selective attention visual function to select an interesting region in each camera. and this system compares the landmarks whether the selective region in each camera finds a same region. If the left and right cameras successfully find a same landmarks, the implemented vision system focuses on the landmark. Using the motor encoder information, we can automatically obtain the depth information and resultantly construct a depth map using the depth information. Computer simulation and experimental results show that the proposed convergence method is very effective to implement the active stereo surveillance system.

Automated Vision-based Construction Object Detection Using Active Learning (액티브 러닝을 활용한 영상기반 건설현장 물체 자동 인식 프레임워크)

  • Kim, Jinwoo;Chi, Seokho;Seo, JoonOh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.5
    • /
    • pp.631-636
    • /
    • 2019
  • Over the last decade, many researchers have investigated a number of vision-based construction object detection algorithms for the purpose of construction site monitoring. However, previous methods require the ground truth labeling, which is a process of manually marking types and locations of target objects from training image data, and thus a large amount of time and effort is being wasted. To address this drawback, this paper proposes a vision-based construction object detection framework that employs an active learning technique while reducing manual labeling efforts. For the validation, the research team performed experiments using an open construction benchmark dataset. The results showed that the method was able to successfully detect construction objects that have various visual characteristics, and also indicated that it is possible to develop the high performance of an object detection model using smaller amount of training data and less iterative training steps compared to the previous approaches. The findings of this study can be used to reduce the manual labeling processes and minimize the time and costs required to build a training database.

Robust Gaze-Fixing of an Active Vision System under Variation of System Parameters (시스템 파라미터의 변동 하에서도 강건한 능동적인 비전의 시선 고정)

  • Han, Youngmo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.3
    • /
    • pp.195-200
    • /
    • 2012
  • To steer a camera is done based on system parameters of the vision system. However, the system parameters when they are used might be different from those when they were measured. As one method to compensate for this problem, this research proposes a gaze-steering method based on LMI(Linear Matrix Inequality) that is robust to variations in the system parameters of the vision system. Simulation results show that the proposed method produces less gaze-tracking error than a contemporary linear method and more stable gaze-tracking error than a contemporary nonlinear method. Moreover, the proposed method is fast enough for realtime processing.

Controller Design for Object Tracking with an Active Camera (능동 카메라 기반의 물체 추적 제어기 설계)

  • Youn, Su-Jin;Choi, Goon-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.83-89
    • /
    • 2011
  • In the case of the tracking system with an active camera, it is very difficult to guarantee real-time processing due to the attribute of vision system which handles large amounts of data at once and has time delay to process. The reliability of the processed result is also badly influenced by the slow sampling time and uncertainty caused by the image processing. In this paper, we figure out dynamic characteristics of pixels reflected on the image plane and derive the mathematical model of the vision tracking system which includes the actuating part and the image processing part. Based on this model, we find a controller that stabilizes the system and enhances the tracking performance to track a target rapidly. The centroid is used as the position index of moving object and the DC motor in the actuating part is controlled to keep the identified centroid at the center point of the image plane.

Development of Web Based Mold Discrimination System using the Matching Process for Vision Information and CAD DB (비전정보와 캐드DB 매칭을 통한 웹 기반 금형 판별 시스템 개발)

  • Choi, Jin-Hwa;Jeon, Byung-Cheol;Cho, Myeong-Woo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.37-43
    • /
    • 2006
  • The target of this study is development of web based mold discrimination system by matching vision information with CAD database. The use of 2D vision image makes possible speedy mold discrimination from many databases. The image processing such as preprocessing, cleaning is done for obtaining vivid image with object information. The web-based system is a program which runs to exchange messages between a server and a client by making of ActiveX control and the result of mold discrimination is shown on web-browser. For effective feature classification and extraction, signature method is used to make sensible information from 2D data. As a result, the possibility of proposed system is shown as matching feature information from vision image with CAD database samples.

Ginseng for an eye: effects of ginseng on ocular diseases

  • Kim, Jisu;Han, Su-Young;Min, Hyeyoung
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • The sense of vision is the primary means by which we gather information from our surroundings, and vision loss, therefore, severely compromises the life of the affected individuals, their families, and society. Loss of vision becomes more frequent with age, and diabetic retinopathy, age-related macular degeneration, cataracts, and glaucoma are the major causes of vision impairment. To find active pharmacological compounds that might prevent or ameliorate the vision-threatening eye diseases, numerous studies have been performed, and some botanical compounds, including those extracted from ginseng, have been shown to possess beneficial effects in the treatment or prevention of common ocular diseases. In this review, we summarize the recent reports investigating the therapeutic effects of ginseng and ginsenosides on diverse ocular diseases and discuss their therapeutic potential.

Vision-based Ground Test for Active Debris Removal

  • Lim, Seong-Min;Kim, Hae-Dong;Seong, Jae-Dong
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.279-290
    • /
    • 2013
  • Due to the continuous space development by mankind, the number of space objects including space debris in orbits around the Earth has increased, and accordingly, difficulties of space development and activities are expected in the near future. In this study, among the stages for space debris removal, the implementation of a vision-based approach technique for approaching space debris from a far-range rendezvous state to a proximity state, and the ground test performance results were described. For the vision-based object tracking, the CAM-shift algorithm with high speed and strong performance, and the Kalman filter were combined and utilized. For measuring the distance to a tracking object, a stereo camera was used. For the construction of a low-cost space environment simulation test bed, a sun simulator was used, and in the case of the platform for approaching, a two-dimensional mobile robot was used. The tracking status was examined while changing the position of the sun simulator, and the results indicated that the CAM-shift showed a tracking rate of about 87% and the relative distance could be measured down to 0.9 m. In addition, considerations for future space environment simulation tests were proposed.

A Study on Visual Feedback Control of a Dual Arm Robot with Eight Joints

  • Lee, Woo-Song;Kim, Hong-Rae;Kim, Young-Tae;Jung, Dong-Yean;Han, Sung-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.610-615
    • /
    • 2005
  • Visual servoing is the fusion of results from many elemental areas including high-speed image processing, kinematics, dynamics, control theory, and real-time computing. It has much in common with research into active vision and structure from motion, but is quite different from the often described use of vision in hierarchical task-level robot control systems. We present a new approach to visual feedback control using image-based visual servoing with the stereo vision in this paper. In order to control the position and orientation of a robot with respect to an object, a new technique is proposed using a binocular stereo vision. The stereo vision enables us to calculate an exact image Jacobian not only at around a desired location but also at the other locations. The suggested technique can guide a robot manipulator to the desired location without giving such priori knowledge as the relative distance to the desired location or the model of an object even if the initial positioning error is large. This paper describes a model of stereo vision and how to generate feedback commands. The performance of the proposed visual servoing system is illustrated by the simulation and experimental results and compared with the case of conventional method for dual-arm robot made in Samsung Electronics Co., Ltd.

  • PDF