• Title/Summary/Keyword: active pressure

Search Result 959, Processing Time 0.028 seconds

Active Suspension using Disturbance Accommodating Sliding Mode Control (능동 현가 장치의 외란 적응 슬라이딩 모드 제어)

  • 김종래;김진호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.275-280
    • /
    • 1999
  • This paper presents a disturbance accommodating sliding mode control for a quarter-car active suspension using an electro-hydraulic actuator. The electro-hydraulic actuator model is nonlinear and uncertain. The hardware constrains on the actuator prevent high gain in a sliding mode control, which deteriorates the force tracking performance. DAC(Disturbance Accommodating Control) is combined with the sliding mode control to improve the tracking performance. DAC observer estimates the pressure due to the actuator uncertainty. The additional control is designed to compensate the estimated pressure. Simulation results show the improved tracking performance with the Proposed control methods.

  • PDF

A Study on the Stability of Cantilever Retaining Wall with a Short Heel (뒷굽이 짧은 캔틸레버 옹벽의 안정성에 관한 연구)

  • Yoo, Kun-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.10
    • /
    • pp.17-28
    • /
    • 2018
  • Important parameters for the stability checks of cantilever wall are the active earth pressure and the weight of soil above the heel of the base slab. If the heel length is so long enough that the shear zone bounded by the failure plane is not obstructed by the stem of the wall, the Rankine active condition is assumed to exist along the vertical plane which is located at the edge of the heel of the base slab. Then the Rankine active earth pressure equations may be theoretically used to calculate the lateral pressure on the vertical plane. However, in case of the cantilever wall with a short heel, the application of Rankine theory is not only theoretically incorrect but also makes the lateral earth pressure larger than the actual pressure and results in uneconomical design. In this study, for the cantilever wall with a short heel the limit analysis method is used to investigate the mechanism of development of the active earth pressure and then the magnitude and location of the resultants of the pressure and the weight of the soil above the heel are determined. The calculated results are compared with the existing methods for the stability check. In case of the cantilever wall with a short heel, the results by the Mohr circle method and Teng's method show max. 3.7% and 32% larger than those of the limit analysis method respectively.

Active Earth Pressure behind Rigid Retaining Wall Rotating about the Top (정점을 중심으로 회전하는 강성옹벽에 작용하는 주동토압)

  • 백규호;사공명
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.181-191
    • /
    • 2004
  • For a rigid retaining wall with rough face, the magnitude and distribution of active earth pressure on the wall are affected by the shape of failure surface and arching effect developed in the backfill as well as internal friction angle of the backfill and wall friction angle. Therefore, the practical shape of failure surface and arching effect in the backfill must be considered to acquire accurate magnitude and non-linear distribution of active earth pressure acting on the rigid retaining wall. In this study, a new formulation for calculating the active earth pressure on a rough rigid retaining wall rotating about the top is proposed considering the practical shape of non-linear failure surface and arching effects. Accuracy of the proposed equation is checked through comparisons of calculations from the proposed equations with existing model test results. The comparisons show that the proposed equations produce satisfactory results.

Active Eanh Pressure Against Caisson Backfilled with Crushed Rock and Sand (II) : Verification and Application (사석과 모래로 뒷채움된 케이슨에 작용하는 주동토압 (II) : 검증과 적용)

  • Paik Kyu-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.2
    • /
    • pp.29-39
    • /
    • 2006
  • In the companion paper (Paik 2006), a new formulation for calculating the nonlinearly distributed active earth pressure acting on a caisson backfilled with crushed rock and sand is proposed, and it takes into account arching effects as well as difference in internal friction angles and unit weights between sand and crushed rock. In this study, in order to partially check the accuracy of the proposed equation, the results of the proposed equation are compared with the equation proposed by Paik (2003a) for caissons with rough surface and homogeneous backfill, and are compared with results of Rankine's theory for caissons with smooth surface and homogeneous backfill. In addition, a parametric study is performed to investigate the effect of $phi_{r}$, $phi_{s}$, $\delta_{r}$, $\gamma_{r}$, $\gamma_{s}$ and $\beta$ on the magnitude of active earth pressure acting on the caisson, and construction methods for minimizing active earth pressure on the caisson are also provided based on the results of a parametric study.

ACTIVE BLEEDING CARE DURING SURGICAL EXTRACTION OF MANDIBULAR THIRD MOLAR: REPORT OF TWO CASES (하악지치 발치 중 극심한 출혈 치험례)

  • Kim, Jong-Bae;Yoo, Jae-Ha;Moon, Seon-Jae;Kim, Seung-Beom
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.27 no.6
    • /
    • pp.560-564
    • /
    • 2001
  • The experienced surgeon can be surprised & challenged by the hazards of active bleeding during oral & maxillofacial surgical procedure, because of alterations in the surgical anatomy, bleeding disorders and surgical intervention of infected tissues. This is a report of two cases of active bleeding during surgical extraction of mandibular third molar, that had the pericoronitis, osteitis and adjacent neurovascular bundle in its apex. When the abrupt active bleeding was occurred during surgical extraction of mandibular third molar, pressure packing by hemostatie agent(bone wax) & wet gauze biting were applied into the extraction socket during 30 minutes. After 30 minutes, the wound was explored about the bleeding and active bleeding was then continued. In spite of repeated bleeding control method of the pressure dressing, the marked hemorrhage was generated continuously. Therefore, the author decised the bleeding as immediately uncontrollable hemorrhage and the pressure dressing was again applied for the more longer duration without wound closure. After 3 days, the pressure dressing was removed and iodoform gauze drainge was then established without the bleeding. The drain was changed as the interval of 3~5 days for prevention of infection & secondary hemorrhage and relatively good wound healing was then resulted in 6 weeks.

  • PDF

CALCULATION OF FLOW FIFLD IN A CHANNEL SUBJECTED TO PRESSURE-BASED BOUNDARY CONDITION

  • Park, Jong-Hyeong;Lee, Jae-Hyeon
    • ETRI Journal
    • /
    • v.10 no.4
    • /
    • pp.118-126
    • /
    • 1988
  • A numerical analysis was performed for the flow field in the vertical channels consist of dummy cards and active cards to define the hydrodynamic role of dummy card which is often installed in electronic equipment between active cards to control the cooling air distribution. For a given velocity profile at the inlet and a pressure-based boundary condition at the outlet of the computation domain, the percentage of the flow rate distribution through active channel and dummy channel formed by an active card and dummy card, respectively, were investigated. As a result of present analysis, the pecentage of flow rate through active channel increases quadraticaly with the increase of the ratio of the height of barrier to the width of the dummy channel.

  • PDF

Development of Ultrasonic Active Fiber Sensor for Structural Health Monitoring (구조물 안전진단을 위한 초음파능동형광섬유 센서의 개발)

  • Lim, Seung-Hyun;Lee, Jung-Ryul;Oh, Il-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.747-752
    • /
    • 2008
  • Fiber-guided sensor system using a generator and a receiver can detect the amplitude of load or pressure. However, this type of sensor can show some difficulties in detecting the location of damages and pressure loadings. To overcome this weakness of this type, the ultrasonic active fiber sensor, which has an integrated ultrasonic generator and sensing part, was developed in this study. By using this sensor system, the location of mechanical loads can be exactly detected. Moreover, the ultrasonic active fiber sensor is more cost-effective than an ultrasonic fiber sensor using two piezoelectric transducers which are used as a generator and a receiver, respectively. Two applications of the ultrasonic active fiber sensor are demonstrated: cure monitoring of lead and measurement of liquid level. Present results showed that the active fiber sensor can be applied for various environmental sensing.

  • PDF

Dynamic Behaviour Analysis of a Hydraulic Control System for Vehicle Active Suspension (차량 능동현가장치용 유압 제어시스템의 동적거동 해석)

  • Jung, Y.G.;Lee, I.Y.
    • Journal of Power System Engineering
    • /
    • v.4 no.1
    • /
    • pp.51-59
    • /
    • 2000
  • Active suspension systems have been using for improving ride quality and stability for vehicles. An active suspension system is composed of a hydraulic pump, pressure control valves, hydraulic dampers, vehicle body, tires and other components. In this study, the mathematical model for the active suspension system based on the quarter car concept is derived, and a program for analysing the dynamic behaviour of the suspension system is developed. The computed results by the developed program are compared with the experimental results for confirming the reliability and usefulness of the developed program.

  • PDF

A Study on the Analysis and Development of Proportional Pressure Control Valve for Vehicle Active Suspension System via Hydraulics Actuator (유압 액추에이터를 고려한 능동 현가장치용 비례압력제어밸브의 해석과 개발)

  • 윤영환;장주섭;최명진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.111-121
    • /
    • 2000
  • Generally, the hydraulic pressures are used for transmitting the force. Therefore, a highly reliable and inexpensive control system has been required for a passenger car. The control-ability of active suspension system is strongly affected by the performance of pressure control valve in the view of dynamic response and energy consumption. In this study, we suggested main design parameters for the optimum design of proportional pressure control valve. The mathematical simulation model was derived from the quarter type model which consisted a valve and hydraulic damper for the purpose of analyzing the valve characteristics. Experiments were performed to confirm the performance of the valve and computations were carried out to ascertain the usefulness of the developed program. The results from computations fairly coincide with those from experiments. This has been achieved by developing the servomechanism valve which comprises the simple combination of a solenoid, a spool valve and a poppet valve. The results from experiments and computations show the development process of optimum proportional pressure control valve in the hydraulics system.

  • PDF

Pseudo-static solution of active earth pressure against relief shelf retaining wall rotating around heel

  • Yun Que;Jisong Zhang;Chengcheng Long;Fuquan Chen
    • Geomechanics and Engineering
    • /
    • v.39 no.1
    • /
    • pp.87-104
    • /
    • 2024
  • In practical engineering, the design process for most retaining walls necessitates careful consideration of seismic resistance. The prevention of retaining wall overturning is of paramount importance, especially in cases where the foundation's bearing capacity is limited. To research the seismic active earth pressure (ES) of a relieving retaining wall rotating around base (RB), the shear dissipation graphs across various operating conditions are analyzed by using Optum software, and the earth pressure in each region was derived by the inclined strip method combined with the limit equilibrium method. By observing shear dissipation graphs across various operating conditions, the distribution law of each sliding surface is summarized, and three typical failure modes are obtained. The corresponding calculation model was established. Then the resultant force and its action point were obtained. By comparing the theoretical and numerical solutions with the previous studies, the correctness of the derived formula is proved. The variation of earth pressure distribution and resultant force under seismic acceleration are studied. The unloading plate's position, the wall heel's length, and seismic acceleration will weaken the unloading effect. On the contrary, the length of the unloading plate and the friction angle of the filling will strengthen the unloading effect. The derived formula proposed in this study demonstrates a remarkable level of accuracy under both static and seismic loading conditions. Additionally, it serves as a valuable design reference for the prevention of overturning in relieving retaining walls.