• Title/Summary/Keyword: active motion

Search Result 921, Processing Time 0.025 seconds

Combined Effects of Gastrocnemius Stretch and Tibialis Anterior Resistance Exercise in Subjects with Limited Ankle Dorsiflexion

  • Lee, Jihyun;Cynn, Heonseock;Shin, Areum;Kim, Bobeen
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.1
    • /
    • pp.10-15
    • /
    • 2021
  • Objective: Limited ankle dorsiflexion is related to ankle injuries. There are various exercises to increase the flexibility of the gastrocnemius for improving the passive range of motion in ankle dorsiflexion. However, to performances in daily activities and athletic sports and higher efficiency of walking and running, both ankle dorsiflexion passive and active range of motion are needed. To investigate the effects of combined gastrocnemius stretching and tibialis anterior resistance exercise on ankle kinematics (passive and active range of motion of ankle dorsiflexion) and tibialis anterior muscle activity in subjects with limited ankle dorsiflexion. Design: Cross-sectional single-group repeated measures design. Methods: Fourteen subjects with limited ankle dorsiflexion were recruited (in the right ankle in 7 and the left ankle in 7). All subjects performed gastrocnemius stretching alone and tibialis anterior resistance exercise after gastrocnemius stretching. The passive and active range of motion of ankle dorsiflexion were measured after interventions immediately. The tibialis anterior activity was measured during active range of motion of ankle dorsiflexion measurement. Results: There was no significant difference of ankle dorsiflexion passive range of motion between gastrocnemius stretching alone and the tibialis anterior resistance exercise after gastrocnemius stretching. The tibialis anterior resistance exercise after gastrocnemius stretching significantly increased active range of motion of ankle dorsiflexion compared to gastrocnemius stretching alone (p<0.05). The tibialis anterior resistance exercise after gastrocnemius stretching significantly increased tibialis anterior activity better than did gastrocnemius stretching alone. Conclusions: Thus, subjects with limited ankle dorsiflexion should be encouraged to perform tibialis anterior resistance exercises.

Study of Short-Term Sunspot Motion toward Flare Onset Prediction

  • Suematsu, Yoshinori;Yatini, Clara Y.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.87.2-87.2
    • /
    • 2011
  • Proper motion of sunspots in several active regions was studied to detect their indicator on flare onset, using data from the Solar Flare Telescope at Mitaka (four flaring active regions), TRACE (e.g. NOAA 0424, M1.7 flare on 5 Aug. 2003) and Hinode (e.g. NOAA 10930, X3.4 flare on 13 Dec. 2006). The proper motion of individual sunspots was derived using a local correlation tracking method. As a result, we found that the sunspots that are located under or close to a part of chromospheric flaring patches showed a change in their moving direction prior to the flare onset. The change in their movements took place a half to two hours before the flare onset. On the other hand, sunspots in non-flaring areas or non-flaring active regions did not show this kind of change. It is likely, therefore, that if a sunspot shows the particular movement, a chromospheric flare is to occur in its nearby region. In the most active regions, the part of flare ribbons was located on an emerging bipolar pair of sunspots. The disturbance in the usual motion of the bipolar sunspots and in other sunspots as well can be interpreted as a sign of magnetic shear development leading to final magnetic energy buildup before its sudden release. We suggest that the change in sunspot motion in a short time scale prior to the flare onset can be regarded as a good indicator in predicting the onset timing and location of chromospheric flares.

  • PDF

The Effects of Modified PNF Ankle Movement Patterns on Active Dorsiflexion Range of Motion and Leg Muscle Activity (수정된 PNF 발목 움직임 패턴이 능동적 발등 굽힘 가동범위 및 다리 근활성도에 미치는 영향)

  • In-Gyun Kim;Su-hong Choi;Sang-Yeol Lee
    • PNF and Movement
    • /
    • v.21 no.3
    • /
    • pp.319-326
    • /
    • 2023
  • Purpose: The purpose of this study was to investigate the effects of modified ankle movement patterns on participants' active dorsiflexion range of motion and leg muscle activity. Methods: This study recruited twenty-five participants, all of whom were healthy individuals with no abnormalities in the ankle or knee joints. The research methodology involved measuring the active dorsiflexion range of motion and muscle activity in each person's legs based on the presence or absence of toe extension while the subjects were in a comfortable, supine position. A statistical analysis was conducted using SPSS 25.0, and a paired samples t-test was employed. The significance level was set at 0.05. Results: When the participants demonstrated the modified ankle movement pattern with a controlled toe grip, there was an increase in their active dorsiflexion angle. However, during the proprioceptive neuromuscular facilitation technique without a controlled toe grip, a higher level of activity was observed in the leg muscles. Conclusion: The results of this study could be used as foundational data for establishing a rehabilitation exercise program designed to enhance range of motion and muscle activation in the ankle joint.

Roll Motion Control of a Mover in Bearingless Linear Motor by Using One-sided Active Magnetic Bearings (베어링리스 리니어 모터에서의 편측식 전자기 베어링을 이용한 이동자의 롤 운동 제어)

  • Kim, Woo-Yeon;Lee, Jong-Min;Kim, Seung-Jong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1184-1191
    • /
    • 2009
  • A bearingless linear motor(BLLM) which consists of two stators and a common mover is able to levitate and move its mover without any linear bearing or even additive windings. In the previous study, BLLM was actively controlled on the translation and pitch motion, while the roll motion is passively stable. In order to control the roll motion, this paper suggests adding active magnetic bearings(AMBs) at bottom of the mover in BLLM. The AMBs control the roll motion and also partially supports the weight of the mover. In this paper, magnetic forces generated by the AMBs are estimated by using an FEM model. Based on the analysis results, the bias current of the AMBs is determined and a PD controller is designed. Through an experimental levitation test, it was verified that roll motion is well controlled by AMB during levitation.

The Effect of Continuous Passive Motion and Continuous Active Motion on Joint Proprioception After Total Knee Replacement (슬관절전치환술 후 연속수동운동(CPM)과 연속능동운동(CAM) 적용이 관절 고유수용감각에 미치는 영향)

  • Yang, Jin-Mo;Kim, Suhn-Yeop
    • Journal of Korean Physical Therapy Science
    • /
    • v.17 no.1_2
    • /
    • pp.41-52
    • /
    • 2010
  • Purpose: The purpose of this study was to compare the effects of continuous passive motion(CPM) and continuous active motion(CAM) on proprioception of the knee after total knee replacement(TKR). Methods: Twenty patients with TKR were randomly allocated into two groups, the CPM group(n=10) and the CAM group(n=10). All subjects were evaluated for levels of pain, passive range of motion and angle reproduction of the knee. An angle reproduction test was used to assess the proprioceptive deficit. Two types of angle reproduction test were used: a passive angle reproduction(PAR) test and an active angle reproduction(AAR) test. The relevant examinations were performed before and after intervention(on the 5th day and the 10th day). The statistical significance were calculated using a t-test and a one-way repeated ANOVA. Results: A pre-intervention significant difference was not found between the two groups. Significantly better results were before and after the intervention at 10 days, for the PAR(flexion direction) test; however, only in the CAM group. There were no significant difference, either before or after the intervention, for the AAR test(flexion and extension direction) in both group. Both groups experienced similar levels of pain and passive range of knee motion before and after the intervention. Conclusion: This study revealed that CAM was a better effect to restore position sense of the knee joint after TKR.

  • PDF

Implementation of Active Impedance Based on Linear Motors (리니어 모터에 근거한 능동 임피던스 구현)

  • 이세한;송재복;김용일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.462-465
    • /
    • 1995
  • In this research a 2-dimensional motion producer based on two linear motors was developed. When the tester provides some motion through the level attached to the upper moving part of the motion producer, it provides the arbitrary intertia, damping and stiffness characteristics without actual change in physical structure of the motion producer. That is, the active impedance is implemented by controlling input currents supplied to the linear motors. A PID controller with feedforward loop was used to control the currents and pre-processing of input velocity and accleration singals from the encoder and the current singnal from the motor driver circuit are conducted to improve the performance.

  • PDF

Base Acceleration Feedforward Control for an Active Magnetic Bearing System Subject to Base Motion (베이스 가진을 받는 전자기 베어링계의 베이스 가속도 앞먹임 제어)

  • Kang, Min-Sig
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.1028-1033
    • /
    • 2002
  • This paper concerns on a non-rotating axis-active magnetic bearing (AMB) system subject to base motion. In such a system, it is desirable to retain the axis within the predetermined air-gap. Motivated from this, an optimal acceleration feedforward control is proposed to reduce the base motion response without deteriorating other feedback control performances. Experimental results demonstrate that the proposed feedforward control reduces the air-gap deviation to 29% that by feedback control alone.

  • PDF

Basic Characteristics of an Active Controlled Capillary for Compensating the Error Motion of Hydrostatic Guideways (유정압안내면 운동오차보정용 능동제어모세관의 기본특성)

  • 송영찬;박천홍;이후상;김수태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.662-667
    • /
    • 1996
  • For compensating the error motion of hydrostatic guideways, the structure and the theoretical design method of ACC(Active Controlled Capillary) are proposed. The maximum controllable range, micro step response and dynamic characteristics of ACC are analyzed experimentally for verifing the availability. The experimental results showed that by the use of ACC, the error motion within 2.7${\mu}{\textrm}{m}$ of a hydrostatic guideway can be compensated with the resolution of 27nm, 1/100 of uncontolled error, and the frequency band of 5.5Hz. From these results, it Is confirmed that the ACC is very effect to improve the moving accuracy of high or ultra precision hydrostatic guideways.

  • PDF

An intelligent semi-active isolation system based on ground motion characteristic prediction

  • Lin, Tzu-Kang;Lu, Lyan-Ywan;Hsiao, Chia-En;Lee, Dong-You
    • Earthquakes and Structures
    • /
    • v.22 no.1
    • /
    • pp.53-64
    • /
    • 2022
  • This study proposes an intelligent semi-active isolation system combining a variable-stiffness control device and ground motion characteristic prediction. To determine the optimal control parameter in real-time, a genetic algorithm (GA)-fuzzy control law was developed in this study. Data on various types of ground motions were collected, and the ground motion characteristics were quantified to derive a near-fault (NF) characteristic ratio by employing an on-site earthquake early warning system. On the basis of the peak ground acceleration (PGA) and the derived NF ratio, a fuzzy inference system (FIS) was developed. The control parameters were optimized using a GA. To support continuity under near-fault and far-field ground motions, the optimal control parameter was linked with the predicted PGA and NF ratio through the FIS. The GA-fuzzy law was then compared with other control laws to verify its effectiveness. The results revealed that the GA-fuzzy control law could reliably predict different ground motion characteristics for real-time control because of the high sensitivity of its control parameter to the ground motion characteristics. Even under near-fault and far-field ground motions, the GA-fuzzy control law outperformed the FPEEA control law in terms of controlling the isolation layer displacement and the superstructure acceleration.

Feature-based Object Tracking using an Active Camera (능동카메라를 이용한 특징기반의 물체추적)

  • 정영기;호요성
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.694-701
    • /
    • 2004
  • In this paper, we proposed a feature-based tracking system that traces moving objects with a pan-tilt camera after separating the global motion of an active camera and the local motion of moving objects. The tracking system traces only the local motion of the comer features in the foreground objects by finding the block motions between two consecutive frames using a block-based motion estimation and eliminating the global motion from the block motions. For the robust estimation of the camera motion using only the background motion, we suggest a dominant motion extraction to classify the background motions from the block motions. We also propose an efficient clustering algorithm based on the attributes of motion trajectories of corner features to remove the motions of noise objects from the separated local motion. The proposed tracking system has demonstrated good performance for several test video sequences.