The Fuel-cut driving is started when the acceleration pedal released with transmission gear engaged. Fuel economy of the vehicle improves by active fuel-cut driving. A deep-learning technique is proposed to predict fuel-cut driving with vehicle speed, acceleration and road gradient data in the study. It's 3~10 of hidden layers and 10~20 of variables and is applied to the 9600 data obtained in the test driving of a vehicle in the road of 12km. Its accuracy is about 84.5% with 10 variables, 7 hidden layers and Relu as activation function. Its error is regarded from the fact that the change rate of input data is higher than the rate of fuel consumption data. Therefore the accuracy can be better by the normalizing process of input data. It's unnecessary to get the signal of vehicle injector or OBD, and a deep-learning technique applied to the data to be got easily, like GPS. It can contribute to eco-drive for the computing time small.
Lee, Dong Yub;Kim, Dong Hyun;Jo, Soo Jin;Kang, Hyun Syug
Journal of Digital Convergence
/
v.17
no.11
/
pp.81-89
/
2019
In order to foster talented people needed for the 4th Industrial Revolution, learner-centered classes that meet the characteristics and needs of students are needed. In particular, the learner-centered student-active class is more meaningful for gifted students who have diverse needs and interests. In order to meet these demands, this study developed a learner-centered science gifted education teaching-learning model based on flipped learning, and analyzed various results revealed after applying the developed program to the gifted class. Based on the results, we proposed a plan for more efficient operation of future learner-centered science gifted education programs.
Journal of the Korea Fashion and Costume Design Association
/
v.21
no.1
/
pp.1-15
/
2019
The purpose of this study is to develop ICT utilization learning materials for a chapter titled 'Environment Friendly Clothing and Reform of Clothing' in technology and home economics textbooks for Year 2 students in middle school. The research methods were selected from ten types of junior high school technology textbooks, which were revised in 2009, and mainly focused on items such as jeans, shirts, shirts, cardigans, and skirts, Using selected textiles and basic design t-shirts, five works were made using structural and decorative details. The results of this study are as follows. First, textile products shown in the chapter 'Environment Friendly Clothing and Reform of Clothing' are most commonly worn and found in daily life. With regard to a reuse method, structural changes to clothing are proposed. For example, cases relating to the changing of a neckline or the use of a shirt or a sleeve are presented. There are some decoration methods adapted in reuse; using ornaments, such as spangles and emblems, patchwork, shirring and the constucting of collages. Second, following the plan, 5 items are designed with T-shirts, shirts, cardigans and skirts. For the T-shirt design, other fabrics including organza and neoplan are used from design point of view, in addition to reused textile products. Detailed structural changes of necklines, sleeves and collars and detailed and the ornamentation method including shirring, smoking, patchwork and collages are used. Third, this study proposes 6 categories (profile, design planning, diagram, reused textile product, production method and order and pictures of T-shirts developed) under the title of 'T-shirt Made Out of Disposed Clothing', selecting a blog as active teaching and learning material as a part of the ICT utilization in educational settings.
Recently, universities have been strengthening software basic education to be active in the era of the fourth industrial revolution. Non-majored students need a variety of teaching methods because they have low knowledge of programming or a lack of connectivity with major courses. Therefore, in this paper, a learning model applying the step-by-step blind programming practice based on the Demonstration Modeling Making model was designed and applied to the actual lecture. As a result of analyzing the problem solving ability of the learner, it was confirmed that the learner's self - solving ratio increased as parking progressed. In the following study, it is necessary to analyze the learner's learning results in various aspects and to study effective teaching methods according to the difficulty of the learning contents.
Korea is both a resource-poor country and a energy-consuming country. In addition, the use and dependence on electricity is very high, and more than 20% of total energy use is consumed in buildings. As research on deep learning and machine learning is active, research is underway to apply various algorithms to energy efficiency fields, and the introduction of building energy management systems (BEMS) for efficient energy management is increasing. In this paper, we constructed a database based on energy usage by device per household directly collected using smart plugs. We also implement algorithms that effectively analyze and predict the data collected using RNN and LSTM models. In the future, this data can be applied to analysis of power consumption patterns beyond prediction of energy consumption. This can help improve energy efficiency and is expected to help manage effective power usage through prediction of future data.
The purpose of this study is to compare and analyze the effects of physical manipulative and exploratory geometry software on the spatial sense for 5th grade elementary school students in learning nets. For this purpose, ton experimental group used Geofix, an operational learning tool, and the experimental group used Cabri 3D, an exploratory geometry software to learn the nets of solids. The comparison group was learned by worksheet only without any manipulative or software. Spatial sense tests were conducted before and after to determine the level, and eye tracking were used to analyze the strategies of students in solving nets problems. As a result, it was confirmed that the using Geofix group was the most effective for the spatial sense, and Cabri 3D could also be a good tool for learning the nets of solids. In addition, after learning the nets of solids, the analytical strategy, which was the most effective strategy for students' solving strategies, increased. In the process of solving spatial tasks such as the spatial sense tasks, eye tracking technology become a very useful tool for exploring students' strategies, so it is expected that objective and useful data will be collected through more active use in the future.
With the recent development of the art distribution system, interest in art investment is increasing rather than seeing art as an object of aesthetic utility. Unlike stocks and bonds, the price of artworks has a heterogeneous characteristic that is determined by reflecting both objective and subjective factors, so the uncertainty in price prediction is high. In this study, we used LSTM Recurrent Neural Network deep learning model to predict the auction winning price by inputting the artist, physical and sales charateristics of the Korean artist. According to the result, the RMSE value, which explains the difference between the predicted and actual price by model, was 0.064. Painter Lee Dae Won had the highest predictive power, and Lee Joong Seop had the lowest. The results suggest the art market becomes more active as investment goods and demand for auction winning price increases.
Journal of the Computational Structural Engineering Institute of Korea
/
v.34
no.4
/
pp.183-189
/
2021
In recent years, active research has been devoted toward developing a monitoring system using ambient vibration data in order to quantitatively determine the deterioration occurring in a structure over a long period of time. This study developed a low-cost edge computing system that detects the abnormalities in structures by utilizing the dynamic characteristics acquired from the structure over the long term for ensemble learning. The system hardware consists of the Raspberry Pi, an accelerometer, an inclinometer, a GPS RTK module, and a LoRa communication module. The structural abnormality detection afforded by the ensemble learning using dynamic characteristics is verified using a laboratory-scale structure model vibration experiment. A real-time distributed processing algorithm with dynamic feature extraction based on the experiment is installed on the Raspberry Pi. Based on the stable operation of installed systems at the Community Service Center, Pohang-si, Korea, the validity of the developed system was verified on-site.
The Journal of the Convergence on Culture Technology
/
v.8
no.4
/
pp.347-353
/
2022
In the restaurant industry, start-ups are active due to high demand from consumers and low entry barriers. However, the restaurant industry has a high closure rate, and in the case of franchises, there is a large deviation in sales within the same brand. Thus, research is needed to prevent the closure of food franchises. Therefore, this study examines the factors affecting franchise sales and uses machine learning techniques to predict the success and failure of franchises. Various factors that affect franchise sales are extracted by using Point of Sale (PoS) data of food franchise and public data in Gangnam-gu, Seoul. And for more valid variable selection, multicollinearity is removed by using Variance Inflation Factor (VIF). Finally, classification models are used to predict the success and failure of food franchise stores. Through this method, we propose success and failure prediction model for food franchise stores with the accuracy of 0.92.
Kim, Junho;Park, Ki-Hyun;Kim, Ho-Seok;Lee, Siwoo;Kim, Sang-Hyuk
Journal of Sasang Constitutional Medicine
/
v.33
no.4
/
pp.1-9
/
2021
Objectives The purpose of this study was to check whether the classification of the individual's Body Mass Index (BMI) could be predicted by analyzing the voice data constructed at the Korean medicine data center (KDC) using machine learning. Methods In this study, we proposed a convolutional neural network (CNN)-based BMI classification model. The subjects of this study were Korean adults who had completed voice recording and BMI measurement in 2006-2015 among the data established at the Korean Medicine Data Center. Among them, 2,825 data were used for training to build the model, and 566 data were used to assess the performance of the model. As an input feature of CNN, Mel-frequency cepstral coefficient (MFCC) extracted from vowel utterances was used. A model was constructed to predict a total of four groups according to gender and BMI criteria: overweight male, normal male, overweight female, and normal female. Results & Conclusions Performance evaluation was conducted using F1-score and Accuracy. As a result of the prediction for four groups, The average accuracy was 0.6016, and the average F1-score was 0.5922. Although it showed good performance in gender discrimination, it is judged that performance improvement through follow-up studies is necessary for distinguishing BMI within gender. As research on deep learning is active, performance improvement is expected through future research.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.