The Bank of Korea raised the benchmark interest rate by a quarter percentage point to 1.75 percent per year, and analysts predict that South Korea's policy rate will reach 2.00 percent by the end of calendar year 2022. Furthermore, because market volatility has been significantly increased by a variety of factors, including rising rates, inflation, and market volatility, many investors have struggled to meet their financial objectives or deliver returns. Banks and financial institutions are attempting to provide Robo-Advisors to manage client portfolios without human intervention in this situation. In this regard, determining the best hyper-parameter combination is becoming increasingly important. This study compares some activation functions of the Deep Deterministic Policy Gradient(DDPG) and Twin-delayed Deep Deterministic Policy Gradient (TD3) Algorithms to choose a sequence of actions that maximizes long-term reward. The DDPG and TD3 outperformed its benchmark index, according to the results. One reason for this is that we need to understand the action probabilities in order to choose an action and receive a reward, which we then compare to the state value to determine an advantage. As interest in machine learning has grown and research into deep reinforcement learning has become more active, finding an optimal hyper-parameter combination for DDPG and TD3 has become increasingly important.
We report the discovery of four quasars with M1450 ≳ -25.0 mag at z ~ 5 and supermassive black hole mass measurement for one of the quasars. They were selected as promising high-redshift quasar candidates via deep learning and Bayesian information criterion, which are expected to be effective in discriminating quasars from the late-type stars and high-redshift galaxies. The candidates were observed by the Double Spectrograph on the Palomar 200-inch Hale Telescope. They show clear Lyα breaks at about 7000-8000 Å, indicating they are quasars at 4.7 < z < 5.6. For HSC J233107-001014, we measure the mass of its supermassive black hole (SMBH) using its C IV λ1549 emission line. The SMBH mass and Eddington ratio of the quasar are found to be ~108 M⊙ and ~0.6, respectively. This suggests that this quasar possibly harbors a fast growing SMBH near the Eddington limit despite its faintness (LBol < 1046 erg s-1). Our 100% quasar identification rate supports high efficiency of our deep learning and Bayesian information criterion selection method, which can be applied to future surveys to increase high-redshift quasar sample.
In engineering education, stimulating students' questions and encouraging learning participation are crucial for achieving higher-order thinking abilities. This study aims to investigate the use and effect of an online communication channel in fostering engineering students' questioning abilities. Consequently, in this research, we gauged students' satisfaction with an engineering class that implemented a communication channel, and scrutinized the changes in their perceptions regarding the significance of questions, their engagement in learning, and their academic self-efficacy. In addition, we interviewed the students who participated in the class. The outcomes are as follows: Firstly, student satisfaction improved compared to the previous semester's class where the communication channel was not utilized. Secondly, learners' understanding of the importance of asking questions positively escalated, alongside their actual frequency of posing questions. Thirdly, there was an improvement in learners' active engagement in their studies and their academic self-confidence. The findings of this research suggest that communication channels should be employed to motivate learners to pose questions and involve students in effective learning.
본 논문에서는 강화학습을 이용하여 비활성 영역 패딩하여 동영상 압축 효율을 향상시키는 기법을 제안한다. 비활성 영역이란 360 영상 혹은 3DOF+ 영상의 예시와 같이 영상 내에서 정보가 존재하지 않는 영역을 의미한다. 하지만 이러한 비활성 영역은 일반적으로 영상의 압축 성능을 제한한다. 기존에는 이를 해결하기 위해 활성 영역과 비활성 영역의 경계부분을 필터링하여 압축 성능을 향상시켰다. 하지만 이러한 방법들은 영상의 특성을 적절하게 반영하지 못하게 된다. 제안하는 기법에서는 영상의 특성과 압축 과정을 고려한 강화학습을 통해서 패딩을 진행하였다. 실험 결과 제안한 기법이 기존 기법에 비해 좋은 성능을 보임을 확인할 수 있다.
Purpose: To prevent and respond to youth sexual problems that are becoming more serious with digital development, this study sought to develop a sex education program that applies gamification as an effective method for youth who are digital natives. Research design, data and methodology: To develop a sex education program for teenagers, elements of gamification were considered based on Dick and Kerry's teaching system design model. The learning content reflected UNESCO's 'Comprehensive Sex Education Guidelines'. In addition, it was designed to enable students to learn about ethics and morals from a social and emotional aspect. Results: A four-session distance learning sex education program was developed for first-year high school students. To learn about gender sensitivity, sexual relationships, sexuality, and healthy sexual behavior, we developed a story that reflects the mission and quest for sex education. It included leaderboards, time limits, and levels, and also utilized mechanics such as points and items. Edutech tools include video content, Google Sheets, Zoom, Padlet, and Mentimeter. Conclusions: This study aims to improve learning effectiveness, satisfaction, and immersion by developing a sex education program for youth using gamification that promotes active learner participation and motivation.
본 연구는 오프라인에서 실시되고 있는 강의식 수업이 학습내용 전달이라는 목적을 달성하기 위해 교수자와 학습자 및 학습자간의 원활한 의사소통의 기회가 구조적으로 제한되고 있는 점에 문제의식을 갖고 출발하였다. 이 같은 한계점을 보완하기 위해 강의식 수업 현장에서 마이크로블로그를 활용한 실시간 의사소통 환경을 조성하여 의사소통 증진 및 수업 촉진의 가능성이 검증되었다. 연구수행을 위해 K대학교 학생 14명이 8주간에 걸쳐 강의식 수업시간에 실시간으로 마이크로블로그 활동을 실시하였다. 그 결과 마이크로블로그에서 교류되는 온라인 콘텐츠를 통해 학습자들의 아이디어 생성 및 교환, 그리고 협력적 활동이 발견되었으며, 높은 수준의 수업 만족도를 바탕으로 수업에 적극적인 참여를 한 것으로 나타났다. 제언사항으로, 향후 온라인 콘텐츠를 활용한 학습효과를 제고시키기 위하여 수업집중도 향상, 콘텐츠 질관리, 그리고 온오프라인 병행수업전략 개발의 필요성이 제안되었다.
현재 컴퓨터교육에서 알고리즘 교육의 중요성은 강조되고 있지만 주어진 문제를 알고리즘으로 표현하고 표현된 알고리즘을 해석하는 방법에는 비교적 연구가 미약하였다. 본 연구에서는 알고리즘의 표현 도구 중 순서도에 대해 초등학교 저학년 대상으로 놀이 활동 기반 학습 방법을 개발하고 실제 수업에 적용하여 학습 가능성을 진단하여 보았다. 학습 놀이는 순차형 놀이, 선택형 놀이, 반복형 놀이와 퍼즐 맞추기 게임으로 4가지이며 퍼즐 맞추기 게임은 학습 놀이 내용을 순서도 카드를 활용하여 실제 순서도로 재구성하는 게임이다. 순서도 학습 후 성취도 평가에서는 학습 놀이 기반으로 수업을 진행한 집단이 ICT기반으로 학습한 집단보다 상대적으로 평균은 약 7.5% 높게 나타났으며 두 집단 모두 학습 후 평균이 10점 만점에 9점 이상을 보였다. 이는 순서도 교육이 초등학교 저학년도 학습 가능하며 특히 놀이 활동을 통한 교육이 효과적이라는 것을 보여준 것이다.
최근 스마트폰의 보급 및 웹 서비스의 도입으로 온라인 사용자들은 대규모의 콘텐츠를 시간과 장소에 관계없이 접할 수 있게 되었다. 그러나 사용자들은 대규모의 콘텐츠 사이에서 원하는 콘텐츠를 찾는 데 어려움을 겪게 되었다. 이러한 문제를 해결하기 위해 다양한 분야에서 사용자 모델링 및 추천 시스템에 대한 연구가 활발하게 수행되었다. 그러나 정보 환경의 변화에 따른 시니어 계층의 적극적인 변화에도 불구하고 시니어 계층에 초점을 맞춘 사용자 모델링 및 추천 시스템에 대한 연구는 매우 부족한 실정이다. 이에 본 논문에서는 기계 학습 방법을 기반으로 스마트 시니어 계층의 선호도를 파악할 수 있는 모델링 방법을 제안하고, 스마트 시니어 분류 모델을 개발한다. 이 결과, 스마트 시니어 계층의 선호도를 파악할 수 있을 뿐만 아니라 스마트 시니어 분류 모델 개발을 통해 시니어 사용자에게 가장 적합한 활동 및 콘텐츠를 제공하는 콘텐츠 추천 연구에 대한 발판을 마련하였다.
함정 전투체계는 무기체계, 정보통신 등의 기술 발전으로 인한 복잡한 전장 환경에 따라 인간이 개입하여 다양한 전술을 운용해야 한다. 따라서 에이전트 기반의 국방 M&S 시스템의 연구가 최근 들어 활발히 진행되고 있다. 그러나 현존하는 에이전트 기반 M&S 시스템은 고정된 전술을 적용하여 분석하는데 그치고 있다. 본 논문에서는 함정 교전에서 보다 적합한 대응을 찾기 위해 환경변화에 능동적으로 대처할 수 있도록 강화 학습 기능을 갖으며, 또한 유전 알고리즘을 이용하여 세대별 진화 학습 기능을 갖는 에이전트 모델링 방법론을 제안하였다. 타당성 검증을 위해 서해상에서 벌어지는 가상의 1:1 함정교전 시뮬레이션을 수행하였고, 이를 통해 함정 교전에 있어 강화 및 진화 학습이 가능함을 검증하였다.
최근 기계 학습을 활용한 비전 검사 시스템의 개발이 활발해지고 있다. 본 연구는 기계 학습을 활용한 결함 검사 모델을 개발하고자 한다. 이미지에 대한 결함 검출 문제는 기계 학습에 있어 지도 학습 방법인 분류 문제에 해당한다. 본 연구에서는 특징을 자동 추출하는 알고리즘과 특징을 추출하지 않는 알고리즘을 기반으로 결함 검출 모델을 개발한다. 특징을 자동 추출하는 알고리즘으로 1차원 합성곱 신경망과 2차원 합성곱 신경망을 활용하였으며, 특징을 추출하지 않는 알고리즘으로 다중 퍼셉트론, 서포트 벡터 머신을 활용하였다. 4가지 모델을 기반으로 결함 검출 모델을 개발하였고 이들의 정확도와 AUC를 기반으로 성능 비교하였다. 이미지 분류는 합성곱 신경망을 활용한 모델 개발이 일반적임에도, 본 연구에서 이미지의 화소를 RGB 값으로 변환하여 서포트 벡터 머신 모델을 개발할 때 높은 정확도와 AUC를 얻을 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.