• Title/Summary/Keyword: active galactic nucleus

Search Result 44, Processing Time 0.029 seconds

MAGNETOHYDRODYNAMIC WAVE PROPAGATION IN THE "IONOSPHERE" OF THE CENTRAL BLACK HOLE IN AN ACTIVE GALACTIC NUCLEUS

  • Park, Seok-Jae
    • Publications of The Korean Astronomical Society
    • /
    • v.7 no.1
    • /
    • pp.71-77
    • /
    • 1992
  • An axisymmetric, stationary electrodynamic model of the central engine of an active galactic nucleus has been well formulated by Macdonald and Thorne. In this model the relativistic region around the central black hole must be filled by highly conducting plasma and the equations of magnetohydrodynamics are then satisfied. In this paper we analyze magnetohydrodynamic wave propagation in this region. We find that there are three distinct types of waves - the Alfven wave and two magnetosonic waves. The wave equations turn out to be not very different from those in nonrelativistic case except they are redshifted.

  • PDF

PRECESSION OF SUPERMASSIVE BLACK HOLES

  • PARK SEOK JAE
    • Journal of The Korean Astronomical Society
    • /
    • v.28 no.1
    • /
    • pp.71-75
    • /
    • 1995
  • In the previous work we made a long term evolution code for the central black hole in an active galactic nucleus under the assumption that the Blandford-Znajek process is the source of the emission. Using our code we get the evolution of the angular velocity of the precession for a supermassive black hole. We consider a hole at the center of an axisymmetric, ellipsoidal galactic nucleus. Our numerical results show that, only for the cases such that the stellar density or the mass of the black hole is large enough, the precession of the black hole - presumably the precession of the galactic jet - is interestingly large.

  • PDF

THEORETICAL CONSIDERATIONS ON THE VARIABILITY OF ACTIVE GALACTIC NUCLEI

  • PARK SEOK JAE
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.97-98
    • /
    • 1996
  • Variability of active galactic nuclei is now a well-known phenomenon. This remains to be fully explained by a theoretical model of the central engine. Time scales of AGN variability seem to range continuously from hours up to months. The short time scale variability must be related to the phenomena on the event horizon of the black hole, while the long one to those in the accretion disk or surrounding matter. Based on the axisymmetric, nonstationary model of the central engine, we discuss theoretical considerations on the variability of active galactic nucleus.

  • PDF

VARIABILITY OF ACTIVE GALACTIC NUCLEI DUE TO FIELD-ACCRETING MODES

  • PARK SEOK JAE
    • Journal of The Korean Astronomical Society
    • /
    • v.27 no.1
    • /
    • pp.77-80
    • /
    • 1994
  • Variability of the emission-line spectra of active galactic nuclei is now a well-known phenomenon. This remains to be fully explained by a theoretical model of the central engine in an active galactic nucleus. Since the magnetic field lines are anchored on the accreting matter, they continuously fall on the event horizon of the central supermassive black hole and increase the net field strength of the hole magnetosphere. The field strength, however, cannot increase without an upper limit and, therefore, it will be decreased by some unknown processes. In this paper we discuss that these increasing and decreasing modes can be repeated periodically and explain the variability of power output, therefore, variability of active galactic nuclei.

  • PDF

OASIS Spectral Images of the Seyfert galaxy NGC 5728 (시이펏 은하 NGC 5728의 OASIS 분광 영상)

  • Hyung, Siek;Son, Dong-Hoon;Ferruit, Pierre;Lee, Woo-Baik
    • Journal of the Korean earth science society
    • /
    • v.27 no.5
    • /
    • pp.569-578
    • /
    • 2006
  • The distribution and kinematic information of the continuum, $H{\alpha},\;H{\beta}$, [O III], & [N II] images based on spectroscopic data secured with the OASIS at the Hawaii CFHT 3.6m telescope have been analyzed to study the physical characteristics of NGC 5728. The three bright regions-northwestern knot, southeastern knot, and the nucleus-exist within a $15"{\times}12"$ sky area which seem to indicate gas flows along the northwestern or western direction from the nucleus. We find that the center of a 10" diameter ring is at the northwestern knot, not at the galactic center. To further analyze the formation mechanism of such a ring, the kinematics of the nucleus and knot have been studied and the central structure of the Active Galactic Nuclei has been investigated by comparing various emission images.

PLASMA WAVE PROPAGATION IN THE BLACK HOLE IONOSPHERE

  • Park, Seok-Jae
    • Journal of The Korean Astronomical Society
    • /
    • v.28 no.2
    • /
    • pp.147-152
    • /
    • 1995
  • An axisymmetric, stationary electrodynamic model of the central engine of an active galactic nucleus has been well formulated by Macdonald and Thorne. In this model the relativistic region around the central black hole must be filled by highly conducting plasma. We analyze plasma wave propagation in this region and discuss the results. We find that the ionosphere cannot exist right outside of the event horizon of the black hole. Another interesting aspect is that certain resonance phenomena can occur in this case.

  • PDF

Study of Active Galactic Nuclei and Gravitational Wave Sources with Time-series Observation

  • Kim, Joonho;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.39.1-39.1
    • /
    • 2021
  • In this presentation, study of the energetic astronomical phenomena, active galactic nucleus (AGN) and gravitational wave (GW) source, with time-series observation will be reported. They emit large amounts of energy and play an important role in the history of the Universe. First, intra-night variability of AGNs is studied using Korea Microlensing Telescope Network (KMTNet). Second topic is photometric reverberation mapping which is applied for 11 AGNs with medium-bands and Lee Sang Gak Telescope. Last, three gravitational wave events were followed-up by various optical telescopes. Each topic will be specifically addressed in the presentation.

  • PDF

ARE THE MACDONALD-THORNE CIRCUITS ELECTRONICALLY EQUIVALENT TO LCR CIRCUITS? (MACDONALD-THORNE 회로들은 전자공학적으로 LCR 회로와 같은가?)

  • PARK SEOK JAE
    • Publications of The Korean Astronomical Society
    • /
    • v.13 no.1 s.14
    • /
    • pp.123-128
    • /
    • 1998
  • The Blandford-Znajek process, which extracts the rotational energy of the supermassive black hole at the center of an active galactic nucleus, is now well explained and educated through the electronic circuit analysis established by Macdonald and Thorne. The Macdonald-Thorne circuits consist of the batteries and resistances of the central black hole and the astrophysical region around the accretion disk. In this letter we will consider the possibility whether we can connect coils and condensers in such circuits or not. If possible, that may explain a sudden corona-phenomenon in an active galactic nucleus. We conclude that a flash of order $\~5\times10^{40}\;ergs\;s^{-1}$ can occur around a $\~10^9M_\bigodot$ black hole through this process.

  • PDF