• Title/Summary/Keyword: active clay

Search Result 79, Processing Time 0.024 seconds

Geology of Nogsan National Industrial Engineering Estate (녹산국가공단 조성지 일대의 토목 지질)

  • 안명석;김종대
    • Explosives and Blasting
    • /
    • v.18 no.3
    • /
    • pp.99-106
    • /
    • 2000
  • The geology of Nogsan industrial estate area, Pusan, Korea consists mainly of andesitic rocks, rhyolitic rocks and hornblende granite. They are then intruded by basic and acidic dikes. All of the igneous activities in this area are in Cretaceous time, that is the lower part of Silla group in Gyoungsang basin. Andesitic volcanic rocks are distributed in two separate basines: Saengok basin and Doodong basin. Although both basines contain andesite and andesitic breccia(Kab), younger andesitic activity was more active to the western Doodong basin giving very little influence on the eastern Saengok basin. Sediments in the area are quarternaly alluvium and colluvium. Alluvium is very thick and consists mainly of silt and clay deposited as delta deposits at the mouth of Nakdong river. Colluvium in the area is short distributary channel deposits. The area is largely filled with socks and sediments to build industrial estates especially on the delta deposits at Shinhodong area and on the shoreline mud bed between Yongwondong and Shinhodong. A careful investigation to avoid the possibility of a large scale mud flow is suggested because it could be trigered by many reason such as an earthquake or a flood on the land where a heavily loaded salt-water may soaked into the muddy bed lying on the granitic basement gently dipping toward the ocean. Althouth the area is in the Yangsan fault zone no ground evidence of fault can be seen despite the RESTEC sattlite image gives excelent traces of linearments in the area.

  • PDF

A novel modeling of settlement of foundations in permafrost regions

  • Wang, Songhe;Qi, Jilin;Yu, Fan;Liu, Fengyin
    • Geomechanics and Engineering
    • /
    • v.10 no.2
    • /
    • pp.225-245
    • /
    • 2016
  • Settlement of foundations in permafrost regions primarily results from three physical and mechanical processes such as thaw consolidation of permafrost layer, creep of warm frozen soils and the additional deformation of seasonal active layer induced by freeze-thaw cycling. This paper firstly establishes theoretical models for the three sources of settlement including a statistical damage model for soils which experience cyclic freeze-thaw, a large strain thaw consolidation theory incorporating a modified Richards' equation and a Drucker-Prager yield criterion, as well as a simple rheological element based creep model for frozen soils. A novel numerical method was proposed for live computation of thaw consolidation, creep and freeze-thaw cycling in corresponding domains which vary with heat budget in frozen ground. It was then numerically implemented in the FISH language on the FLAC platform and verified by freeze-thaw tests on sandy clay. Results indicate that the calculated results agree well with the measured data. Finally a model test carried out on a half embankment in laboratory was modeled.

The Swiss Radioactive Waste Management Program - Brief History, Status, and Outlook

  • Vomvoris, S.;Claudel, A.;Blechschmidt, I.;Muller, H.R.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • v.1 no.1
    • /
    • pp.9-27
    • /
    • 2013
  • Nagra was established in 1972 by the Swiss nuclear power plant operators and the Federal Government to implement permanent and safe disposal of all types of radioactive waste generated in Switzerland. The Swiss Nuclear Energy Act specifies that these shall be disposed of in deep geological repositories. A number of different geological formations and sites have been investigated to date and an extended database of geological characteristics as well as data and state-of-the-art methodologies required for the evaluation of the long-term safety of repository systems have been developed. The research, development, and demonstration activities are further supported by the two underground research facilities operating in Switzerland, the Grimsel Test Site and the Mont Terri Project, along with very active collaboration of Nagra with national and international partners. A new site selection process was approved by the Federal Government in 2008 and is ongoing. This process is driven by the long-term safety and feasibility of the geological repositories and is based on a step-wise decision-making approach with a strong participatory component from the affected communities and regions. In this paper a brief history and the current status of the Swiss radioactive waste management program are presented and special characteristics that may be useful beyond the Swiss program are highlighted and discussed.

Electrochemical Characteristics of MMO(Ti/Ru)-Coated Titanium in a Cathode Environment of Polymer Electrolyte Membrane Fuel Cell (MMO(Ti/Ru) 코팅된 타이타늄의 고분자 전해질 연료전지 양극환경에서의 전기화학적 거동)

  • Heo, Ho-Seong;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.340-347
    • /
    • 2022
  • In this research, mixed metal oxide (TiO2, RuO2) coating was applied to grade 1 titanium as a bipolar plate for polymer electrolyte membrane fuel cell (PEMFC). Electrochemical experiments were carried out in an aqueous solution of pH 3 (H2SO4 + 0.1 ppm HF, 80 ℃) determined by DoE. The air was bubbled to simulate a cathode environment. Potentiodynamic polarization test revealed that corrosion current densities of the titanium substrate and MMO-coated specimen were 0.180 µA/cm2 and 4.381 µA/cm2, respectively. There was no active peak. After potentiostatic experiment, current densities of the titanium substrate and the MMO-coated specimen were 0.19 µA/cm2 and 1.05 µA/cm2, respectively. As a result of observing the surface before and after the potentiostatic experiment, cracked dried clay structures were observed without corrosion damage. Both the titanium substrate and the MMO-coated specimen could not satisfy the interfacial contact resistance suggested by the DoE. Thus, further research is needed before they could be applied as bipolar plates.

Experimental study on modified low liquid limit silt for abutment backfill in bridge-embankment transition section

  • Shu-jian Wang;Yong Sun;Zhen-bao Li;Kai Xiao;Wei Cui
    • Geomechanics and Engineering
    • /
    • v.32 no.6
    • /
    • pp.601-613
    • /
    • 2023
  • Low liquid limit silt, widely distributed in the middle and down reaches of Yellow River, has the disadvantages of poor grading, less clay content and poor colloidal activity. It is very easy to cause vehicle jumping at the bridge-embankment transition section when the low liquid limit silt used as the backfill at the abutment back. In this paper, a series of laboratory tests were carried out to study the physical and mechanical properties of the low liquid limit silt used as back filling. Ground granulated blast furnace slag (GGBFS) was excited by active MgO and hydrated lime to solidify silt as abutment backfill. The optimum ratio of firming agent and the compaction and mechanical properties of reinforced soil were revealed through compaction test and unconfined compressive strength (UCS) test. Scanning electron microscope (SEM) test was used to study the pore characteristics and hydration products of reinforced soil. 6% hydrated lime and alkali activated slag were used to solidify silt and fill the model of subgrade respectively. The pavement settlement regulation and soil internal stress-strain regulation of subgrade with different materials under uniformly distributed load were studied by model experiment. The effect of alkali activated slag curing agent on curing silt was verified. The research results can provide technical support for highway construction in silt area of the Yellow River alluvial plain.

Role of earthenware in food processing applications

  • J.H. Choi;S.M. Kim;K.S. Han;U.S. Kim;M.S. Kim
    • Journal of Ceramic Processing Research
    • /
    • v.22 no.1
    • /
    • pp.91-97
    • /
    • 2021
  • Korean earthenware (also known as onggi) has been reported to play an active role in improving the fermentation quality of foods such as fermented soy products, as well as simply serving as a storage container. In this study, we conduct a region-wise analysis of the effects of the onggi shape, chemical composition, and gas-permeation characteristics on the total phenolic content and antioxidant activity of the soy sauce stored in these containers during its fermentation. During the fermentation process, the amount of antioxidant produced in the soy sauce increases with increase in the container diameter relative to the height. The antioxidant amount also increases with decrease in the amounts of alkali and alkaline earth metal oxides in the clay chemical composition and increase in the gas permeability of the onggi. Of all the onggi considered in our experiments, the Gangjin onggi exhibits the widest diameter relative to its height, least amounts of alkali and alkaline earth metal oxide components, and highest gas permeability. The antioxidant power is highest in the soy sauce fermented in the Gangjin onggi, corresponding to a total phenolic content value of 16.6 mg GAE/ml and FRAP of 54.3 mg AAE/ml.

Comparison of Growth and Contents of Active Ingredients of Angelica gigas Nakai under Different Cultivation Areas (재배지 환경에 따른 참당귀 생육 및 지표성분 함량 비교)

  • Kim, Nam Su;Jung, Dae Hui;Jung, Chung Ryul;Kim, Hyun-Jun;Jeon, Kwon Seok;Park, Hong Woo
    • Korean Journal of Plant Resources
    • /
    • v.32 no.5
    • /
    • pp.448-456
    • /
    • 2019
  • Angelica gigas Nakai (Korean danggui), a member of the Umbelliferae family, is a Korean traditional medicinal plant whose roots have been used for treating gynecological diseases. In this study, the growth characteristics and decursin contents of Angelica gigas Nakai were compared according to the difference of cultivation area. As a result, the root diameter of A. gigas Nakai was the highest in the Duil-ri, and the number of the root of A. gigas was the highest in Topdong-ri. The fresh weight and dry weight of Angelica gigas Nakai was the highest in the Topdong-ri. The soil properties of cultivation area was Sandy Clay Loam and the content of organic matter was the highest in Topdong-ri. The total content of decursin was 5.31% the highest in Duil-ri. And 4.96% in Namhoeryong-ri, 4.41% in Kosun-ri, 4.25% in topdon-ri, 3.96% in Gugok-ri, and 3.64% in Gongjeon-ri was accumulated.

Topographic Characteristics, Formation and Classification of Soils Developed in Limestone I. Physico-chemical Characteristics of Limestone Soils Based on Topography (석회암(石灰巖) 토양(土壤)의 지형적(地形的) 특성(特性)과 생성(生成)·분류(分類) I. 지형(地形)에 따른 석회암(石灰巖) 토양(土壤)의 이화학적(理化學的) 특성(特性))

  • Jung, Sug-Jae;Kim, Tai-Soon;Moon, Joon;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.4
    • /
    • pp.265-270
    • /
    • 1989
  • Soil properties for the limestone-derived soil were examined to relate soil formation to stratigraphy of parent materials and hillslope positions in Bangjeol Ri, Yeongweol Eup, Gangweon Do. Pyeongchang, Anmi, Yulgog and Mungyeong series were described for topographic positions such as shoulder position, footslope, terrace and local bottom associated with toposequence where the landscape consisted of gently rolling hillslopes and nearly level plains. 1. Pyeongchang, Anmi, Yulgog and Mungyeong series had the standard hue of the 2.5YR, 5YR, 10YR and 2.5Y, respectively. Thus, color sequence of soil could be related to hillslope positions on the landscape. 2. With ascending slope toward summit, the clay content increased while silt content decreased 3. Silt/Clay ratios ranged from 0.27 to 3.76 and it was increased with descending to bottom. It, also, appeared that maturity of soil was higher at summit position than at bottom. 4. Soils developed in limestone were neutral in soil reaction and very low in available $P_2O_5$. OM, available $SiO_2$, CEC, and active Fe in soils seemed to be increased with ascending to summit position.

  • PDF

Assessment of Dredged Soils and Sediments Properties in the Lower Reach of Nakdong River and Coastal Areas of Busan for Beneficial Uses (낙동강 하류 및 부산연안지역의 준설토와 퇴적토 활용을 위한 특성 평가)

  • Yi, Yongmin;Kim, Gukjin;Sung, Kijune
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.57-66
    • /
    • 2013
  • Although the quantity of dredged soils has increased owing to recent new harbor construction, sea course management, polluted sediment dredging, and four-river project, the reuse or recycling of those dredged soils has not done properly in Korea. To develop measures to utilize them in various ways for reuse or recycling, the biophysicochemical properties of dredged soils and sediment were assessed in this study. Samples were classified according to their sources-river and sea-by location, and as dredged soil and sediment depending on storage time. The results showed that dredged materials from the sea have high clay content and can be used for making bricks, tiles, and lightweight backfill materials, while dredged materials from the river have high sand content and can be used in sand aggregates. Separation procedures, depending on the intended application, should be carried out because all dredged materials are poorly sorted. All dredged soils and sediments have high salinity, and hence, salts should be removed before use for cultivation. Since dredged materials from the sea have adequate concentrations of nutrients, except phosphate, they can be used for creating and restoring coastal habitats without carrying out any additional removal processes. The high overall microbial activities in dredged materials from the river suggested that active degradation of organic matter, circulation of nutrients, and provision of nutrients may occur if these dredged materials are used for cultivation purpose.

Separation of soil Organic Debris using Sucrose-ZnCl2 Density Gradient Centrifugation

  • Jung, Seok-Ho;Chung, Doug-Young;Han, Gwang-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.1
    • /
    • pp.30-36
    • /
    • 2012
  • The active fraction of soil organic matter, which includes organic debris and light organic fraction, plays a major role in nutrient cycling. In addition, particulate organic matter is a valuable index of labile soil organic matter and can reflect differences in various soil behaviors. Since soil organic matter bound to soil mineral particles has its density lower than soil minerals, we partitioned soil organic matter into debris ($<1.5g\;cm^{-3}$), light fraction ($1.5-2.0g\;cm^{-3}$), and heavy fraction ($>2.0g\;cm^{-3}$), based on high density $ZnCl_{2-}$ sucrose solutions. Generally, partitioned organic bands were clearly separated, demonstrating that the $ZnCl_{2-}$ sucrose solutions are useful for such a density gradient centrifugation. The available gradient ranges from 1.2 to $2.0g\;cm^{-3}$. Although there was not a statistically meaningful difference in organic debris and organomineral fractions among the examined soils, there was a general trend that a higher content of organic debris resulted in a higher proportion of light organomineral fraction. In addition, high clay content was associated with increased fraction of light organomineals. Partitioning of soil organic carbon revealed that carbon content is reduced in the heavy fraction than in the light fraction, reflecting that the light fraction contains more fresh and abundant carbon than the passive resistant fraction. It was also found that carbon contents in the overall organic matter, debris, light fraction, and heavy fractions may differ considerably in response to different farming practices.