• Title/Summary/Keyword: activated magnetite

Search Result 13, Processing Time 0.029 seconds

The Decomposition of Carbon-dioxide and Methanation with Activated Magnetite (활성화 magnetite를 이용한 이산화탄소 분해와 메탄화에 관한 연구)

  • 임병오;김승호;박영구
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.2
    • /
    • pp.183-190
    • /
    • 1999
  • Magnetite was synthesized with $FeSO_4$, and NaOH for the decomposition of carbon dioxide and for the study of the methane formation. The chemical equivalent ratio was changed from 0.5 to 1.50 for the magnetite synthesis. The chemical equivalent ratio was fixed in 1.00, and Nickel chloride and Rhodium chloride equally added and synthesized with the ratio was of 0.10~10.00 mole%. The crystal strucure of the synthesized magnetite was measured XRD. Putting synthesized magnetite in the reactor and using hydrogen gas oxygen-deficient magnetite was made. Injecting carbon dioxide in the reactor, the decomposition reaction was experimented. The formation of methane was confirmed injecting hydrogen gas in the reactor after carbon dioxide was decomposed.

  • PDF

The effect of iron oxide ballasted flocculant on the activated sludge settleability and dewaterability (산화철계 가중응집제가 활성슬러지의 침전성 및 탈수성에 미치는 영향)

  • Yang, Hyeji;Kim, Yongbum;Choi, Younggyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.4
    • /
    • pp.277-284
    • /
    • 2021
  • The ballasted flocculation effects of the mill scale and magnetite on activated sludge were investigated. Both ballasted flocculants (BF) could remarkably improve the sludge settleability in terms of zone settling velocity (ZSV) and sludge volume index (SVI). With the BF dosage of 0.2 to 2.0 g-BF/g-SS, the magnetite particles showed better efficiency on improving settling behavior of activated sludge than the mill scale due to higher surface area and hydrophobic property. The efficiency of SVI30 with magnetite injection was 2.5 to 11.3% higher than mill scale injection and that of the ZSV appreciated from 23.7% to 44.4% for magnetite injection. Averaged floc size of the BF sludge with magnetite dosage (0.5 g-BF/g-SS) was 2.3 times higher than that of the control sludge. Dewaterability of the sludge was also greatly improved by addition of the BF. The specific resistance to filtration (SRF) was reduced exponentially with increasing the dosage of BF. However, the BF's particle size effect on the SRF looks to be marginal. Consequently, for improving the dewaterability, the BF played a physical role to remove the pore water of the biological flocs by intrusive attachment and a chemical role to induce aggregation of the flocs by charge neutralization.

Synthesis of Fe3O4-δ Using FeC2O4·2H2O by Thermal Decomposition in N2 Atmosphere (N2분위기에서 FeC2O4·2H2O의 열분해에 의한 Fe3O4-δ합성)

  • Park, Won-Shik;Oh, Kyoung-Hwan;An, Suk-Jin;Suhr, Dong-Soo
    • Korean Journal of Materials Research
    • /
    • v.22 no.5
    • /
    • pp.253-258
    • /
    • 2012
  • Activated magnetite ($Fe_3O_{4-{\delta}}$) was applied to reducing $CO_2$ gas emissions to avoid greenhouse effects. Wet and dry methods were developed as a $CO_2$ removal process. One of the typical dry methods is $CO_2$ decomposition using activated magnetite ($Fe_3O_{4-{\delta}}$). Generally, $Fe_3O_{4-{\delta}}$ is manufactured by reduction of $Fe_3O_4$ by $H_2$ gas. This process has an explosion risk. Therefore, a non-explosive process to make $Fe_3O_{4-{\delta}}$ was studied using $FeC_2O_4{\cdot}2H_2O$ and $N_2$. $FeSO_4{\cdot}7H_2O$ and $(NH_4)_2C_2O_4{\cdot}H_2O$ were used as starting materials. So, ${\alpha}-FeC_2O_4{\cdot}2H_2O$ was synthesized by precipitation method. During the calcination process, $FeC_2O_4{\cdot}2H_2O$ was decomposed to $Fe_3O_4$, CO, and $CO_2$. The specific surface area of the activated magnetite varied with the calcination temperature from 15.43 $m^2/g$ to 9.32 $m^2/g$. The densities of $FeC_2O_4{\cdot}2H_2O$ and $Fe_3O_4$ were 2.28 g/$cm^3$ and 5.2 g/$cm^3$, respectively. Also, the $Fe_3O_4$ was reduced to $Fe_3O_{4-{\delta}}$ by CO. From the TGA results in air of the specimen that was calcined at $450^{\circ}C$ for three hours in $N_2$ atmosphere, the ${\delta}$-value of $Fe_3O_{4-{\delta}}$ was estimated. The ${\delta}$-value of $Fe_3O_{4-{\delta}}$ was 0.3170 when the sample was heat treated at $400^{\circ}C$ for 3 hours and 0.6583 when the sample was heat treated at $450^{\circ}C$ for 3 hours. $Fe_3O_{4-{\delta}}$ was oxidized to $Fe_3O_4$ when $Fe_3O_{4-{\delta}}$ was reacted with $CO_2$ because $CO_2$ is decomposed to C and $O_2$.

Electrical and Physical Properties of Magnetite-Filled NBR (마그네타이트가 충전된 NBR의 전기적 특성 및 물성 연구)

  • 최교창;이은경;최세영;박수진
    • Polymer(Korea)
    • /
    • v.27 no.1
    • /
    • pp.40-45
    • /
    • 2003
  • In this work, the effect of different contents of $Fe_3O_4$ and temperature variation on the electrical conductivity ($\sigma$) in the polar acrylonitrile butadiene rubber (NBR)/$Fe_3O_4$ (magnetite) mixture system was investigated. It was found that the percolation threshold concept holds true for the conductive particle-filled composites where $\sigma$ indicates a nearly sharp increase when the concentration of magnetite in the mixture exceeds 22%. The temperature dependence of $\sigma$ was thermally activated below and at the percolation threshold ($P_c$). Magnetite acted as reinforcing and conductive filler for NBR. At room temperature and higher voltages, the electrical current was proportional to the square of voltage ($I{\propto}V^2$) for the composites which contain 30 phr of magnetite. Moreover, it was shown that the composites with magnetite of 50 phr showed the highest tensile strength and elongation at break, which was due to the formation of optimal physical interlock and crosslinking. The results of 100%, 200%, and 300% Young moduli said that the moduli are largely correlated with reinforcement effect of magnetite and viscosity of the blends from torque curve.

Kinetics of $CO_2$ decomposition over CuO-Magnetite and ZnO-Magnetite catalysts (CuO-Magnetite 및 ZnO-Magnetite 촉매상에서 $CO_2$ 분해반응속도론)

  • Yang, Chun-Mo;Rim, Byung-O
    • Journal of the Korean Applied Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.79-85
    • /
    • 1998
  • $Cu_xFe_{3-x}O_4$ catalyst and $Zn_xFe_{3-x}O_4$ catalyst were synthesized by the air oxidation method with various C(II) and Zn(II) weights. Activated catalysts decomposed carbon dioxide to carbon at $350^{\circ}C$, $380^{\circ}C$, $410^{\circ}C$ and $440^{\circ}C$. The value of carbon dioxide decomposition rate for $Cu_{0.003}Fe_{2.997}O_4$ and $Zn_{0.003}Fe_{2.997}O_4$ catslysts than was better catalysts. The decomposed rate of the catalysts is about 85%${\sim}$90%. The reaction rate constant(4.00 $psi^{1-{\alpha}}/min$) and activation energy(2.62 kcal/mole) of $Cu_{0.003}Fe_{2.997}O_4$ catalyst are better than $Zn_{0.003}Fe_{2.997}O_4$

Preparation and Characterization of Elastomeric Conductor based on Magnetite and Chloroprene Rubber ($Fe_3O_4$와 Chloroprene Rubber (CR)를 기초로한 탄성 전도체의 제조 및 특성연구)

  • Choi, Kyo-Chang;Lee, Eun-Kyoung;Choi, Seo-Young
    • Elastomers and Composites
    • /
    • v.38 no.1
    • /
    • pp.81-87
    • /
    • 2003
  • In this work, $Fe_3O_4$ (magnetite), conductive filler was prepared from $FeCl_2{\cdot}4H_2O,\;(CH_2)_6N_4$ (hexamethylene tetramine), and $NaNO_2$, followed by mixing with crystallizable chloroprene rubber(CR). The influence of conductive filler content on the properties of the conductive composite was studied and temperature dependence of the electrical conductivity (${\sigma}$) was also investigated. It is found that the percolation threshold concept holds true for the conductive particle-filled composite where ${\sigma}$ indicates a nearly sharp increase when the fraction of magnetite in the mixture exceeds 27%. The temperature dependence of ${\sigma}$ is thermally activated blelow or at the $P_c$. Magnetite acts as reinforcement and conductive filler for CR rubber. Moreover, it is shown that the composite with magnetite of 50 phr gives the most significant mechanical properties for tensile strength and elongation at break, which is due to the formation of optimum physical interlock and crosslinking. The results of 100%, 200%, and 300% moduli suggest that the moduli are related with reinforcement effect of magnetite and viscosity of the blend.

Evaluation of dissolution characteristics of magnetite in an inorganic acidic solution for the PHWR system decontamination

  • Ayantika Banerjee ;Wangkyu Choi ;Byung-Seon Choi ;Sangyoon Park;Seon-Byeong Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1892-1900
    • /
    • 2023
  • A protective oxide layer forms on the material surfaces of a Nuclear Power Plant during operation due to high temperature. These oxides can host radionuclides, the activated corrosion products of fission products, resulting in decommissioning workers' exposure. These deposited oxides are iron oxides such as Fe3O4, Fe2O3 and mixed ferrites such as nickel ferrites, chromium ferrites, and cobalt ferrites. Developing a new chemical decontamination technology for domestic CANDU-type reactors is challenging due to variations in oxide compositions from different structural materials in a Pressurized Water Reactor (PWR) system. The Korea Atomic Energy Research Institute (KAERI) has already developed a chemical decontamination process for PWRs called 'HyBRID' (Hydrazine-Based Reductive metal Ion Decontamination) that does not use organic acids or organic chelating agents at all. As the first step to developing a new chemical decontamination technology for the Pressurized Heavy Water Reactor (PHWR) system, we investigated magnetite dissolution behaviors in various HyBRID inorganic acidic solutions to assess their applicability to the PHWR reactor system, which forms a thicker oxide film.

Paleomagnetic study of Remagnetization by a Dike in the Gyeongsang Supergroup (경북 고령지역에 분포하는 경상누층군의 관입암류에 의한 재자화작용에 관한 고지자기 연구)

  • Jeon, Young-Soo;Min, Kyung Duck;Lee, Youn Soo;Lee, Young Hoon;Lee, Dong Young
    • Economic and Environmental Geology
    • /
    • v.31 no.4
    • /
    • pp.311-324
    • /
    • 1998
  • Paleomagnetic study is carried out to investigate the possibility of remagnetization by dikes in the Cretaceous Gyeongsang Basin. We selected a site for a contact test as a preliminary study, and collected 41 core samples (7 from andesitic dike, 17 from sedimentary rock on the left side of dike and 17 from sedimentary rock on the right side). Magnetite was responsible for the remagnetization based on microscopic observation and demagnetization analysis. Although the increasement of magnetic susceptibility appears on both sides about 100 cm from the dike, the increment of NRM intensity was obtained from the specimens on the left side only. This is interpreted that the size of magnetite newly formed is dominated by superparamagnetic grains in the right side, but by larger than single-domain grains in the left. Reversed polarity component remagnetized by intrusion of dike was also found only for core samples from 116 cm left side of dike but abscent from right side indicating the remagnetization by the dike depends on the geometric shape and width of the dike, which is supported by field observations. The content of epidote is well correlated with remagnetization, and indicates the hydrothermal alteration/metameorphism was activated by the intrusion. We concluded that the above evidences in this study further support thermally-activated chemical origin of the remagnetization with meager contribution of contact metamorphism, and that any significant evidence of regional-scaled remagnetization was not found in the study area.

  • PDF

Crystal Structure Behavior of Vanadium-Titanium Magnetite (VTM) Ore by Planetary Ball Mill (바나듐 함유 티탄철광의 유성 볼밀에 의한 결정구조 거동)

  • Han, Yosep;Kim, Seongmin;Jung, Minuk;Jeon, Ho-Seok
    • Resources Recycling
    • /
    • v.31 no.2
    • /
    • pp.63-69
    • /
    • 2022
  • In this study, mechanical grinding using a planetary ball mill was performed under various conditions to evaluate its effect on the crystal structure of vanadium titanium magnetite (VTM) ore from the Kwain Mine in South Korea. The crystal structure of the activated product was also evaluated. Magnetite and ilmenite were identified as the main types of VTM ore used in the Kwain Mine, and the main types of gangue minerals were iron-based silicate minerals. According to the mechanical activation results, the crystallinity and crystal size decreased as the size of the grinding media (balls) decreased, and the amorphization of the sample/ball filling was significant as the amount of the sample was reduced. In addition, as the grinding speed and time increased, the crystal structure significantly changed, proving that these two parameters had a greater effect on the crystal structure than the ball size and sample/ball filling ratio.

Effects of Heat Treatment Conditions of FeC2O4·2H2O on the Formation of Fe3O4-δ (FeC2O4·2H2O의 열처리 조건이 Fe3O4-δ 형성에 미치는 영향)

  • Oh, Kyoung-Hwan;Park, Won-Shik;Rhee, Sang-In;Suhr, Dong-Soo
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.620-625
    • /
    • 2012
  • A general synthetic method to make $Fe_3O_{4-{\delta}}$ (activated magnetite) is the reduction of $Fe_3O_4$ by $H_2$ atmosphere. However, this process has an explosion risk. Therefore, we studied the process of synthesis of $Fe_3O_{4-{\delta}}$ depending on heat-treatment conditions using $FeC_2O_4{\cdot}2H_2O$ in Ar atmosphere. The thermal decomposition characteristics of $FeC_2O_4{\cdot}2H_2O$ and the ${\delta}$-value of $Fe_3O_{4-{\delta}}$ were analyzed with TG/DTA in Ar atmosphere. ${\beta}-FeC_2O_4{\cdot}2H_2O$ was synthesized by precipitation method using $FeSO_4{\cdot}7H_2O$ and $(NH_4)_2C_2O_4{\cdot}H_2O$. The concentration of the solution was 0.1 M and the equivalent ratio was 1.0. ${\beta}-FeC_2O_4{\cdot}2H_2O$ was decomposed to $H_2O$ and $FeC_2O$4 from $150^{\circ}C$ to $200^{\circ}C$. $FeC_2O4$ was decomposed to CO, $CO_2$, and $Fe_3O_4$ from $200^{\circ}C$ to $250^{\circ}C$. Single phase $Fe_3O_4$ was formed by the decomposition of ${\beta}-FeC_2O_4{\cdot}2H_2O$ in Ar atmosphere. However, $Fe_3C$, Fe and $Fe_4N$ were formed as minor phases when ${\beta}-FeC_2O_4{\cdot}2H_2O$ was decomposed in $N_2$ atmosphere. Then, $Fe_3O_4$ was reduced to $Fe_3O_{4-{\delta}}$ by decomposion of CO. The reduction of $Fe_3O_4$ to $Fe_3O_{4-{\delta}}$ progressed from $320^{\circ}C$ to $400^{\circ}C$; the reaction was exothermic. The degree of exothermal reaction was varied with heat treatment temperature, heating rate, Ar flow rate, and holding time. The ${\delta}$-value of $Fe_3O_{4-{\delta}}$ was greatly influenced by the heat treatment temperature and the heating rate. However, Ar flow rate and holding time had a minor effect on ${\delta}$-value.