• Title/Summary/Keyword: acoustic feature

Search Result 238, Processing Time 0.014 seconds

An acoustic feature [noise] in the sound pattern of Korean and other languages (소리체제에서 음향 자질[noise]: 한국어와 기타 언어들에서의 한 예증)

  • Rhee, Seok-Chae
    • Speech Sciences
    • /
    • v.6
    • /
    • pp.103-117
    • /
    • 1999
  • This paper suggests that the onset-coda asymmetry found in languages like Korean and others should be dealt with in terms of one acoustic feature rather than other articulatory features, claiming that the acoustic feature involved here is [noise], i.e., 'aperiodic waveform energy'. It determines the structural well-formedness of the languages in question whether a coda ends in [noise] or not, regardless of the intensity, the frequency, and the time duration of the [noise]. Fricatives, affricates, aspirated stops, tense stops, and released stops are all disallowed in the coda position due to the acoustic feature [noise] they, commonly end with if they were, posited in the coda. The proposal implies that the three seemingly separate prohibitions of consonants in the coda position -- i) no fricatives/affricates, ii) no aspirated/tense stops, and iii) no released stops -- are directly correlated with each other. Incorporation of the one acoustic feature [noise] in the feature theory enables us to see that the aspects of onset-coda asymmetry are derived from one single source: ban, of [noise] in the coda.

  • PDF

Feature Compensation Combining SNR-Dependent Feature Reconstruction and Class Histogram Equalization

  • Suh, Young-Joo;Kim, Hoi-Rin
    • ETRI Journal
    • /
    • v.30 no.5
    • /
    • pp.753-755
    • /
    • 2008
  • In this letter, we propose a new histogram equalization technique for feature compensation in speech recognition under noisy environments. The proposed approach combines a signal-to-noise-ratio-dependent feature reconstruction method and the class histogram equalization technique to effectively reduce the acoustic mismatch present in noisy speech features. Experimental results from the Aurora 2 task confirm the superiority of the proposed approach for acoustic feature compensation.

  • PDF

CNN-based Opti-Acoustic Transformation for Underwater Feature Matching (수중에서의 특징점 매칭을 위한 CNN기반 Opti-Acoustic변환)

  • Jang, Hyesu;Lee, Yeongjun;Kim, Giseop;Kim, Ayoung
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • In this paper, we introduce the methodology that utilizes deep learning-based front-end to enhance underwater feature matching. Both optical camera and sonar are widely applicable sensors in underwater research, however, each sensor has its own weaknesses, such as light condition and turbidity for the optic camera, and noise for sonar. To overcome the problems, we proposed the opti-acoustic transformation method. Since feature detection in sonar image is challenging, we converted the sonar image to an optic style image. Maintaining the main contents in the sonar image, CNN-based style transfer method changed the style of the image that facilitates feature detection. Finally, we verified our result using cosine similarity comparison and feature matching against the original optic image.

Detection of Main Spindle Bearing Defects in Machine Tool by Acoustic Emission Signal via Neural Network Methodology (AE 신호 및 신경회로망을 이용한 공작기계 주축용 베어링 결함검출)

  • 정의식
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.4
    • /
    • pp.46-53
    • /
    • 1997
  • This paper presents a method of detection localized defects on tapered roller bearing in main spindle of machine tool system. The feature vectors, i.e. statistical parameters, in time-domain analysis technique have been calculated to extract useful features from acoustic emission signals. These feature vectors are used as the input feature of an neural network to classify and detect bearing defects. As a results, the detection of bearing defect conditions could be sucessfully performed by using an neural network with statistical parameters of acoustic emission signals.

  • PDF

A Study on Feature Extraction of Transformers Aging Signal using discrete Wavelet Transform Technique (이산 웨이블렛 변환 기법을 이용한 변압기 열화신호의 특징추출에 관한 연구)

  • Park, Jae-Jun;Kwon, Dong-Jin;Song, Yeong-Cheol;Ahn, Chang-Beom
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.3
    • /
    • pp.121-129
    • /
    • 2001
  • In this paper, a new efficient feature extraction method based on Daubechies discrete wavelet transform is presented. This paper especially deals with the assessment of process statistical parameter using the features extracted from the wavelet coefficients of measured acoustic emission signals. Since the parameter assessment using all wavelet coefficients will often turn out leads to inefficient or inaccurate results, we selected that level-3 stage of multi decomposition in discrete wavelet transform. We make use of the feature extraction parameter namely, maximum value of acoustic emission signal, average value, dispersion, skewness, kurtosis, etc. The effectiveness of this new method has been verified on ability a diagnosis transformer go through feature extraction in stage of aging(the early period, the middle period, the last period)

  • PDF

A Study on Spoken Digits Analysis and Recognition (숫자음 분석과 인식에 관한 연구)

  • 김득수;황철준
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.6 no.3
    • /
    • pp.107-114
    • /
    • 2001
  • This paper describes Connected Digit Recognition with Considering Acoustic Feature in Korea. The recognition rate of connected digit is usually lower than word recognition. Therefore, speech feature parameter and acoustic feature are employed to make robust model for digit, and we could confirm the effect of Considering. Acoustic Feature throughout the experience of recognition. We used KLE 4 connected digit as database and 19 continuous distributed HMM as PLUs(Phoneme Like Units) using phonetical rules. For recognition experience, we have tested two cases. The first case, we used usual method like using Mel-Cepstrum and Regressive Coefficient for constructing phoneme model. The second case, we used expanded feature parameter and acoustic feature for constructing phoneme model. In both case, we employed OPDP(One Pass Dynamic Programming) and FSA(Finite State Automata) for recognition tests. When appling FSN for recognition, we applied various acoustic features. As the result, we could get 55.4% recognition rate for Mel-Cepstrum, and 67.4% for Mel-Cepstrum and Regressive Coefficient. Also, we could get 74.3% recognition rate for expanded feature parameter, and 75.4% for applying acoustic feature. Since, the case of applying acoustic feature got better result than former method, we could make certain that suggested method is effective for connected digit recognition in korean.

  • PDF

Rank-weighted reconstruction feature for a robust deep neural network-based acoustic model

  • Chung, Hoon;Park, Jeon Gue;Jung, Ho-Young
    • ETRI Journal
    • /
    • v.41 no.2
    • /
    • pp.235-241
    • /
    • 2019
  • In this paper, we propose a rank-weighted reconstruction feature to improve the robustness of a feed-forward deep neural network (FFDNN)-based acoustic model. In the FFDNN-based acoustic model, an input feature is constructed by vectorizing a submatrix that is created by slicing the feature vectors of frames within a context window. In this type of feature construction, the appropriate context window size is important because it determines the amount of trivial or discriminative information, such as redundancy, or temporal context of the input features. However, we ascertained whether a single parameter is sufficiently able to control the quantity of information. Therefore, we investigated the input feature construction from the perspectives of rank and nullity, and proposed a rank-weighted reconstruction feature herein, that allows for the retention of speech information components and the reduction in trivial components. The proposed method was evaluated in the TIMIT phone recognition and Wall Street Journal (WSJ) domains. The proposed method reduced the phone error rate of the TIMIT domain from 18.4% to 18.0%, and the word error rate of the WSJ domain from 4.70% to 4.43%.

Acoustic Target of Interest Tracking Algorithm Using Classification Feedback (표적 식별 정보 피드백을 통한 관심 음향 표적 추적 기법)

  • Choi, Kiseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.4
    • /
    • pp.225-231
    • /
    • 2014
  • This paper suggests an algorithm to improve the tracking performance for an underwater acoustic target using the feedback information of acoustic feature of a target. While conventional tracking algorithms use detected acoustic signals only, the proposed algorithm uses detected acoustic signals and target feature information as well. Since the proposed algorithm tracks only the selected measurements using target feature information, it prevents onset of unnecessary tracks and improves tracking performance for target of interest. Furthermore, it optimizes tracking parameters for the target of interest and guarantees robustness and consistency of the track. Some simulations are performed to demonstrate the improved tracking performance of the proposed algorithm.

Acoustic Channel Compensation at Mel-frequency Spectrum Domain

  • Jeong, So-Young;Oh, Sang-Hoon;Lee, Soo-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1E
    • /
    • pp.43-48
    • /
    • 2003
  • The effects of linear acoustic channels have been analyzed and compensated at mel-frequency feature domain. Unlike popular RASTA filtering our approach incorporates separate filters for each mel-frequency band, which results in better recognition performance for heavy-reverberated speeches.

SVM-based Drone Sound Recognition using the Combination of HLA and WPT Techniques in Practical Noisy Environment

  • He, Yujing;Ahmad, Ishtiaq;Shi, Lin;Chang, KyungHi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5078-5094
    • /
    • 2019
  • In recent years, the development of drone technologies has promoted the widespread commercial application of drones. However, the ability of drone to carry explosives and other destructive materials may bring serious threats to public safety. In order to reduce these threats from illegal drones, acoustic feature extraction and classification technologies are introduced for drone sound identification. In this paper, we introduce the acoustic feature vector extraction method of harmonic line association (HLA), and subband power feature extraction based on wavelet packet transform (WPT). We propose a feature vector extraction method based on combined HLA and WPT to extract more sophisticated characteristics of sound. Moreover, to identify drone sounds, support vector machine (SVM) classification with the optimized parameter by genetic algorithm (GA) is employed based on the extracted feature vector. Four drones' sounds and other kinds of sounds existing in outdoor environment are used to evaluate the performance of the proposed method. The experimental results show that with the proposed method, identification probability can achieve up to 100 % in trials, and robustness against noise is also significantly improved.