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Abstract

The effects of linear acoustic channels have been analyzed and compensated at mel-frequency feature domain. Unlike 
]lopular RASTA filtering our approach incorporates separate filters for each mel-frequency band, which results in better 

]ecognition performance for heavy-reverberated speeches.
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I. Introduction

Acoustic channel mismatches between training and 
testing environments result in performance degradation in 

;mtomatic speech recognition. Although time-domain 

deconvolution filters may be developed, they require 

extensive computation, especially for acoustic channels 

with long time delays. Therefore, many researchers had 
come up with filtering approaches at feature domain. 

1 effects of microphones and telecommunication channels 

i an be modeled with impulse responses with short time 
delays and add bias terms to clean speech features in the 

]Dg-spectrum domain, which may be compensated by 

log-spectral mean subtraction] 1,2].
However, room acoustics usually come with longer time 

delays, which introduce interactions among several time
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frames. Highpass or bandpass filters at modulation­
frequency domain had been developed by heuristics or 

based on information theory[l,31-
In this study, we analyzed the effects of acoustic 

channels with longer time delays on speech features, and 

came up with a new filtering method at mel-frequency 

spectral domain. Unlike other feature space methods our 

method incorporates separate filters for each mel- 
frequency band, which are optimized based on given 

training sets of clean and distorted speech data. The 
performance of the proposed compensation method was 
tested for several acoustic channels.

II. Analysis of Distorted Features

To analyze channel distortion effects in the feature 
domain, linear time-invariant channel is assumed as 
%(0 = S r s(t~ r) h(r). Here, s(t), and are 
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clean signal, channel impulse response and distorted 
signal, respectively.

The short-time Fourier transform of distorted speeches 
at a time frame is given by

그 ££讽거，一7冗-尸*（以）£~"허*广）b"职‘

⑴

Here, w（ t） is Hamming window function, and 叫 <=五） 

is the sampled time index corresponding to the tth time 

frame with a sample length I between time frames. By 
decomposing the global sample index r into time frame 
index I and local sample index at a time frame, i.e., 

r= 11+k, eqn. 1 can be rewritten as

XG血 f项-하**‘伽 • h{ll+k"村
I k m
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where Sk（ttf） is the Fourier transfonn of clean speech 

with a shifted window by k time samples as shown in 

Figure 1. By introducing \ 辻 is possible to model 

intermediate feature vectors between adjacent frames.

In general, h아» is a fest-varying fimction of k, and the 
dependency becomes more complicated for g幻,f、） with 

the complex exponential term. However, in order to allow

small feature changes between adjacent frames, the 
number of time samples between frame shifts is usually 
set to a small number. Therefore, varies much

more slowly over k than MW and may be approx 

imated as a constmit within a frame.

Moreover, if represents short-time Fourier
transform of channel impulse response corresponding to 
Ith time frame, GQ,f} =、5쇼 虾、; then long

reverberation charnel distorts spectral features as follows

X&f） = T =Esq -
I k I （3）

It can be noticed that acoustic channel distorts each 

spectral band separately, which are modeled as inde­

pendent convolutive filters 허cmg time frames. Therefore, 
to compensate for channel distortions, one needs to define 

deconvolutive filters for each spectral band.

III. Compensation of Channel-distorted 

Fe 개 ures

It is assumed that there exist some measured data for 
clean speeches and corresponding distorted speeches with 

the acoustic environment of interests. Deconvolutive filters 
are adaptively trained to transform the distorted features

Figure 1. Frame analysis with time-sample-shifted Hamming window.
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Figure 2. Basic concepts of acoustic channel compensation.

into clean speech features.

Figure 2 illustrates the basic concepts of the adaptive 

tiaining and feature compensation at test phase. At the 

training phase of the convolutive filters both the clean 

speeches and distorted speeches are fed to a same feature 

extractor, and the filter coefficients are adaptively adjusted 
to minimize the mean-square-error (MSE). At the test 
phase the convolutive filters transfonn the distorted 

filatures into clean speech features for better recognition 
performance.

Popular MFCC features are selected for speech 
recognition tasks. To obtain MFCC feature from the 

sliort-time Fourier transforms of speeches in eqn. 3S one 
used to calculate magnitude squares for spectral powers, 
sum over mel-frequency bands,郎>ply logarithmic operations, 
and perform discrete cosine transforms. Although the linear 
filters are defined at short-time Fourier transform domain 

only and no끼inear transforms are required for the other 

cases, the linear convolutive filters may still be applicable 

as an approximation. The discrete cosine transforms 
introduce couplings among frequency bands, and the 
p roposed convolutive filters can not be applied separately 
f()r each frequency band. Therefore, we had tested the 
convolutive filters at complex spectrum, spectral power, 
niel-frequency spectral power, and log-spectrum domains. 
At the log-spectrum domain the transformation equation 
is given as

稣=Z W*財 + 4 = Z Wy log、£ Vikx[,_J)k + &

j j L * .
皿느 ;£ 曲 T：]2 (4)

where 恭,£ # , j冶 denote distorted log-spectrum vector, 
compensated log-spectrum vector, and clean log-spectrum 
vector at tth frame and ith band, respectively. vik is the 

weight between ith mel-frequency band and kth power­

spectrum. is the jtk filter coefficient at the ith mel- 

frequency band, and 匕 denotes a bias term at the ith 

mel-frequency band. With zero-mean normalization of 
feature vectors these bias terms become zero.

Steepest decent algorithm is able to find proper mapper 
parameter minimizing eqn. 4 as shown below

吗= w出l1]_77=丄
a%

끖 (5)

To speed up the parameter learning, we calculated 
optimal learning rate 倾 as follows. Here, we revisited 

error function defined at eqn. 4 as

!斗•诺心-財-;+〃 £쁪
2

(6)
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Hence, minimization of with respect to 〃 gives 

following optimal learning rate.

IV. Experiment기 Results

To evaluate performance of the proposed convolutive 

filters, we conducted isolated word recognition (IWR) 

experiment using speech signal distorted by simulated 

channels. Korean 50-word database uttered three times by 

16 people is used as baseline experiment[5]. Among the 

total of 2400 utterances, 1350 utterances are used for 
recognizer training and the other 1050 utterances are used 

for recognition test. We make four sets of training and test 

division by random selections in order to effectively utilize 

small database. Each speech frame is generated with a 30 
msec Hamming window and 10 msec shifting. Twenty- 

three mel-frequency filter banks are used, and 13th-order 

MFCC features are calculated. Then, each word is 

normalized to 64 with a trace segmentation algorithm. A 
multilayer perceptron with 832-50-50 nodes is used for 

recognition and recognition results are summarized by 
averaging over 20 trials, ie, 5 trials with random 
initialization for each of 4 data sets.

For training of convolutive filters, we made use of 15 
second-long speech signals extracted from the train 
database, which are not included in the four sets of 

recognizer test speeches. Each convolutive filter incorporates 

9-frame delays.
Simulated acoustic channels with three different RT60 

reverberation time, i.e., 170 msec, 350 msec, and 700 

msec, are generated by image method[4] as shown in 
Figure 3. These channels are convolved with clean speech 

database in the time domain, which results in channel-

(c) RT7D0 channel
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Figure 3. Impulse response for simulated acoustic channel with several reverberation time (RT60) (a) 170 msec (b) 350 msec (c) 700 msec.
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Table 1. Recognition rates of isolated words for 3 different 

acoustic channels.

Algorithms
Test

Org Org-170 Org-350 Org-700

Without 

compensation
96.2 75.2 65.0 61.4

RASTA 80.0 75.3 69.7

Proposed filter 89.8 86.2 78.1

distorted speech.
Experimental results show that feature transformations 

al the log-spectrum domain provide best recognition 
performance. It may come from the fact that the log- 
sj >ectrum values are most directly connected to the MFCC 
values. Therefore, results of feature transformation only at 

the log-spectrum domain are reported here.
Table 1 displays the recognition rates for speech dis- 

tcrted by three simulated channels when the recognizer is 
trained on clean speech. Baseline results show that 

mismatched channels degrade recognition rates about 20 

percents in light reverberation to 35 percents in heavy 

reverberation. Although the RASTA algorithm with a 
fixed convolutive filter for all frequency bands provides 

enhanced recognition rates, the proposed convolutive 
filters for each mel-frequency band result in much better 
recognition rates.

It can be seen from Table 1 that recognition rates are 
improved by about 10 percents over RASTA algorithm. 
The improvements come from added complexity of the 
convolutive filters with available clean-to-distorted speech 
training data.

Figure 4 represents frequency magnitude responses for 
the twenty-three trained filters for the 3 acoustic channels. 
The frequency response of the RASTA filter is also shown 
at Figure 4(d) for comparison. The average frequency 

response of trained convolutive filters for the 23 mel- 
frequency bands is quite similar to that of the RASTA 

filter for acoustic channels with shorter time delays. 
However, as the time delay becomes longer, the trained 

filter results in smaller cutoff frequencies with more 

variations among frequency bands. It may come from the 

(에 RT17D channel

Figure 4. Freq니ency responses of trained filters and RATSA-filter.
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narrower frequency bandwidth of the impulse response 
function with shorter time delays.

V. Condusion

In this paper we demonstrated that acoustic channels 

with long time delays can be compensated for robust 

speech recognition. By training separate convolutive filters 

at each mel-frequency band, the developed algorithm 
successfully compensated acoustic channels up to 700 

msec time delays.
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