• Title/Summary/Keyword: acoustic coefficient

Search Result 413, Processing Time 0.023 seconds

Design of a Micro-perforated Panel Absorber at High Incident Sound Pressure (높은 입사 음압에서의 미세 천공판을 이용한 흡음 기구의 설계)

  • Park, Soon-Hong;Seo, Sang-Hyun;Jang, Young-Soon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.10
    • /
    • pp.983-990
    • /
    • 2010
  • Reduction of acoustic loads of space launch vehicles can be achieved by acoustic absorbers satisfying strict cleanness requirements. This limited the use of general porous materials and requires non-porous sound absorbers. Micro-perforated panel absorbers(MPPA) is one of promising sound absorbers satisfying the cleanness requirement for launch vehicles. However, its applicability was limited to low sound pressure levels according to the acoustic impedance model of micro-perforated panels. In this paper the applicability of micro-perforated panel absorbers at high incident sound pressure was investigated in experimental ways. The absorption characteristics of a micro-perforated panel absorber was simulated according to its design variables, e.g., minute hole diameters and aperture ratios. It was shown that optimal design can be readily done by using proposed design charts. Experiments were conducted to measure acoustic properties of the designed micro-perforated panel absorbers. The results showed that acoustic resistance increases rapidly as incident sound pressure level does but change of acoustic reactance can be neglected in a practical point of view. This caused the decrease of peak value of absorption coefficient at high incident sound pressure level, but the amount of reduction can be accepted in practice. The major advantage of the micro-perforated panel absorber(wide absorption bandwidth) was still kept at high sound pressure level.

Fabrication of 1-3 Piezo-composites with a "Dice & Fill" Method and Characterization of Their Piezoelectric Properties as a Function of Lateral Spatial Scale ("Dice와 fill" 방식을 이용한 1-3 압전복합재의 제조와 횡방향 단위 크기에 따른 압전특성 평가)

  • Kim, Young-Deog;Kim, Kwang-Il;Jeong, Woo-Cheol;Kim, Heung-Rak;Kim, Dong-Su
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.4
    • /
    • pp.354-360
    • /
    • 2002
  • The piezoelectric composites had many advantages in comparison with conventional piezoelectric ceramics and piezopolymers for ultrasonic transducers used in NDT and in medical ultrasionic imaging. The electromechanical coupling coefficient should be high and the acoustic impedance should be low in these applications. However, the cross-coupling with spurious oscillations caused by laterally running plate waves exhibited complex motions in the surface of piezoelectric composites with coarse lateral spatial scale. The thickness mode electromechanical coupling coefficient of 1-3type of piezoelectric compoistes were 0.36 to 0.64, and the acoustic impedance of them were 9.8 to 22.7 MRayl. The lateral resonance frequency of 1-3 type piezoelectric composites shifted to high frequency region with decreasing lateral spatial scale.

Measurement of Crack Length by Ultrasonic Attenuation Coefficient (초음파 감쇠계수에 의한 균열길이의 측정)

  • Chung, Nam-Yong;Park, Sung-Il
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.340-345
    • /
    • 2003
  • In this paper, the ultrasonic attenuation coefficient was measured by variation of crack length for double-cantilever beam(DCB) specimen. The energy release rate, G, was obtained by the experimental measurement of compliance. The experimental results represents that the relation between crack length for the ultrasonic attenuation coefficient and energy release rate is increased proportionally. From the results of experiments, the measurement method of crack length by the ultrasonic attenuation coefficient was proposed and discussed.

  • PDF

Measuring Scattering Coefficient in 1:10 Reverberation Chamber Using the ISO Method (ISO 방법론 및 1:10 축소잔향실을 이용한 확산률 측정)

  • 전진용;이병권;정갑철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.252-256
    • /
    • 2001
  • Scattering of surface materials has been known as one of the most important aspects in evaluating the acoustics of concert halls are designed. One of the methods that can reduce the errors in estimating the reverberation time and other acoustic parameters through computer modeling is to calculate scattering coefficient of surface materials. However. so far, no objective and reliable methods measuring scattering coefficient has been suggested. In this situation, ISO has suggested the method of measuring the random-incidence scattering coefficient on surfaces in diffuse field, whereas AES has introduced a method on directional-incidence in free field. In this study, the scattering coefficients of five kinds of hemispheres (1.5, 2.0. 2.5. 3.0. 3.5cm) were measured by using the ISO method in 1:10 reverberation chamber. It was found that 3.0cm hemisphere has the highest scattering coefficient satisfying 95% reliability.

  • PDF

Measurement of Crack Length by Ultrasonic Attenuation Coefficient (초음파 감쇠계수에 의한 균열길이의 측정)

  • Chung, Nam-Yong;Park, Sung-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.386-393
    • /
    • 2004
  • In this paper, the ultrasonic attenuation coefficient was measured by variation of crack length for double-cantilever beam(DCB) specimen. The energy release rate, G, was obtained by the experimental measurement of compliance. The experimental results represents that the crack length for the ultrasonic attenuation coefficient and energy release rate is increases proportionally From the experimental results, we proposed a detecting method of the crack length by the ultrasonic attenuation coefficient and discussed it.

Calculation of Suspended Sediment Flux from ADP (ADP를 이용한 부유사 이동량의 산출)

  • 오병철;추용식;정병순
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.3
    • /
    • pp.222-231
    • /
    • 2002
  • The ADP is an advanced piece of oceanographic equipment that measures water speed and direction profiles from the acoustic Doppler principle. In recent years, the strength of the acoustic backscatter obtained from ADP has been used to measure vertically suspended sediment concentration(SSC) profiles. In this study, an ADP was installed in coastal waters near Yumsan, on the west coast of Korea, and flow and sediment data were gathered simultaneously. SSC concentrations were calculated from the acoustic backscatter strengths adjusted by using calibrated acoustic coefficients. The observed SSC profiles were compared with analytical solutions and showed good agreement. Simultaneously, the suspended material fluxes were analyzed in detail. ADP was very useful for measuring the vertically distributed suspended sediment concentrations and flow velocity profiles.

Effect of Sound Field on the Forced Convection Heat Transfer from an Isothermal Cylinder (음장이 등온원통으로부터의 강제대류 열전달에 미치는 영향)

  • 권영필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.373-380
    • /
    • 1988
  • The effect of sound on the heat transfer from an isothermal cylinder in cross flow is investigated by numerical analysis. The modeling is made for the laminar incompressible flow fluctuating in the range of the Reynolds number, 5.leq.Re.leq.35, by the sinusoidal acoustic field. The instantaneous response of the flow and heat transfer is simulated for various frequencies. It is shown that the heat transfer amplitude decreases and the phase lags behind the flow velocity with increase in the frequency. The time-mean effects of the acoustic field on the flow field and heat transfer, known as the acoustic and thermoacoustic streaming, are analyzed. The time-mean heat transfer coefficients are decreased around the forward stagnation point but increased in the wake region. Such a local difference in heat transfer coefficients is a function of the frequency and becomes greatest at some frequency. However, with balance between the local increase and decrease, the overall heat transfer coefficient is almost unaffected by sound.

A Mathematical Formulation of the Structural-acoustic System with an Opening and a Flexible Structure (입구와 유연한 구조물로 구성된 경계를 가지는 구조-음향 연성계의 수학적 표현)

  • Seo, Hee-Seon;Kim, Yang-Hann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.5 s.98
    • /
    • pp.527-535
    • /
    • 2005
  • This paper explains a general coupling system in terms of the system parameters. impedance of a cavity or mobility of a structure. To easily access the mechanism of the structural-acoustic coupled system, a simple expression is derived. A general coupled equation is also derived of a general coupled problem constituted a flexible structure and an opening boundary in terms of vector and matrix notation, and is analyzed the coupling phenomena using the understanding acquired simple coupled system. The paper shows that the general coupled equation is expanded version of the simple coupled equation by some limiting checks. The paper also shows that the degree of coupling is proportioned to a stiffness of the acoustic system and a modal coupling coefficient, but is in inverse proportion to a mass of the structural system and the difference of the excitation frequency and resonant frequency of the acoustic or structural system.

A Study on the Absorption Characteristics of Absorbents in Duct System with the Air Cavity (공기층을 갖는 공조덕트 구조물에서 흡음재의 흡음특성에 관한 연구)

  • 김찬묵;김도연;방극호
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.892-897
    • /
    • 2000
  • In this paper, experimental methods to find acoustic characteristics of acoustically treated air-conditioning duct system are proposed. Existing methods to analyze acoustic properties of duct with absorbent material have dilemma which has to assume the wave in duct to be a plane wave. Under this assumption. applicable frequency limitation makes accurate analysis of practical air-conditioning system impossible. In order to analyze the properties of in-lined treated absorbent with high degree of accuracy, in this experiments the range of exciting frequency of sound source is broadband, which means that source speaker excited higher mode of in-duct sound field. Also, to define the relations of air cavity to the acoustic characteristics, acoustic experiments on ducts with air cavity of different depth are operated. In conclusion, air-cavity makes the absorbing ability of duct improved in low frequency range. Due to the interactions between the air cavity depth and the depth of absorbents, according to depth of cavity, the magnitude of absorption coefficients vs frequencies in specific range is changed. In lower frequency range, the absorption of sound energy by air cavity is more dominant than by absorbent itself, in higher range, the inversion is true.

  • PDF