• Title/Summary/Keyword: acid-resistance

Search Result 1,916, Processing Time 0.031 seconds

Effects of surface treatment on the osseointegration potential of orthodontic mini-implant (분사처리 후 산부식 표면처리된 교정용 미니 임플랜트의 골유착능에 관한 연구)

  • Jeon, Mi-Sun;Kang, Yoon-Goo;Mo, Sung-Seo;Lee, Keun-Bye;Kook, Yoon-Ah;Kim, Seong-Hun
    • The korean journal of orthodontics
    • /
    • v.38 no.5
    • /
    • pp.328-336
    • /
    • 2008
  • Objective: The purpose of this study was to compare the torque resistance to removal of sandblasted large grit and acid etched (SLA) surface treated orthodontic mini-implants and smooth surface orthodontic mini-implants as well as performing histologic observations. Methods: Two groups of custom screw shaped orthodontic mini-implants (C-implant, 1.8 mm outer diameter $\times$ 9.5 mm length, Cimplant, Seoul, Korea) were designated. 22 SLA treated C-implants (SLA group) and 22 machined surface C-implants (machined group) were placed in the tibia metaphysis of 11 adult New Zealand white rabbits. Following a 6-week healing period, the rabbits were sacrificed. Subsequently, the C-implants were removed under reverse torque rotation with a digital torque measuring device and independent t-test was performed. Selected tissues were prepared for histologic observation. Results: The SLA group presented a higher mean removal torque value (6.286 Ncm) than the machined group (4.491 Ncm) which was statistically significant (p < 0.005). Histologic observation revealed a trend of more new bone formation in contact with the screw surface in the SLA group than the smooth group. Conclusions: The results of this study suggested that SLA surface treatment can enhance the osseintegration potential for C-orthodontic mini-implants.

Changes of Polyamine Content and Phytoavailability in Lactuca sativa cultivated in Cadmium and Arsenic Treated Soil (카드뮴과 비소처리가 상추의 polyamine함량 및 유효도에 미치는 영향)

  • Moon, Kwang-Hyun;Koh, Mun-Hwan;Kim, Won-Il;Jung, Goo-Bok;Kim, Kyung-Min
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.3
    • /
    • pp.223-227
    • /
    • 2000
  • Absorption of Cadmium(Cd) and Arsenic(As) by lettuce following to the change of polyamine content in lettuce were examined to find the effect of these elements on lettuce growth and on the basic resistance mechanism. As the contents of Cd and As were increased in soil, the contents of these elements were significantly increased in lettuce but lettuce growth was decreased. Sequential fractionation experiment of the Cd and As treated soil was shown that exchangeable, dilute acid extractable, and organically bound form, which were more mobile and phyto-available, of Cd were increased by 5.6, 42.9, and 56.7% during a growing season whereas 17.6, 25.0, and 24.1% were increased in case of As, respectively. Specially, the Cd content of leaves and roots in lettuce was positively correlated with exchangeable, dilute acid extractable, and residual form of Cd in the treated soil. However, the As content of roots in lettuce was positively correlated with all chemical forms of As in the treated soil. The contents of putrescine and cadaverine, a kind of polyamine, were also increased in lettuce as both elements were increased in soil.

  • PDF

ABA Signal Transduction Pathway in Plants: ABA Transport, Perception, Signaling and Post-Translational Modification (식물의 앱시스산 신호 전달 기작: 앱시스산 수송, 인식, 신호 전달 및 번역 후 변형 과정에 관하여)

  • Lee, Jae-Hoon
    • Journal of Life Science
    • /
    • v.24 no.2
    • /
    • pp.196-208
    • /
    • 2014
  • During the life cycle of plants, water deficit leads to an adverse effect on its growth and development. To increase the productivity of crops, overcoming such drought stress is one of the most important issues in the field of plant study. Among plant hormones, the phytohormone, abscisic acid (ABA) plays a crucial role in eliciting resistance to drought stress as well as in multiple developmental processes, such as seed germination, stomatal closure, and seedling growth. Therefore, further understanding of the ABA-mediated signal transduction pathway in plants is an effective strategy to generate drought-tolerant plants. Posttranslational modification, such as phosphorylation and ubiquitination, is an efficient mechanism for plants to acquire quick adaptation against environmental stress conditions since this process directly affects pre-existing signaling components by modulating protein activity and stability. Here, recent reports on ABA signaling are reviewed, especially focusing on ABA transport, perception, signaling, and posttranslational modification in ABA-mediated cellular responses. Also, we present future prospects on how the control of such a mechanism can be applied to generate useful agricultural crops.

Cucurbitacin-I, a Naturally Occurring Triterpenoid, Inhibits the CD44 Expression in Human Ovarian Cancer Cells (난소암 세포주의 CD44 발현에 미치는 Cucurbitacin-I의 효과)

  • Seo, Hee Won;Kim, Jin-Kyung
    • Journal of Life Science
    • /
    • v.28 no.6
    • /
    • pp.733-737
    • /
    • 2018
  • Cucurbitacin-I, a natural triterpenoid derived from Cucurbitaceae family plants, exhibits a number of potentially useful pharmacological and biological activities. Indeed, the previous study demonstrated that cucurbitacin-I reduced the proliferation of colon cancer cells by enhancing apoptosis and causing cell cycle arrest at the G2/M phase. CD44, a type I transmembrane protein with the function of adhering to cells, mediates between the extracellular matrix and other cells through hyaluronic acid. Recent studies have demonstrated that an overexpression of the CD44 membrane receptor results in tumor initiation and growth, specific behaviors of cancer stem cells, the development of drug resistance, and metastasis. The aim was to examine the effect of cucurbitacin-I on CD44 expression human ovarian cancer cells because the effect of cucurbitacin-I on CD44 expression has not been reported. The expressions of CD44 mRNA and protein were detected using a quantitative real-time reverse-transcription polymerase chain reaction and a Western blot analysis, respectively. Treatment with cucurbitacin-I inhibited the expression of CD44 mRNA and protein. A subsequent analysis revealed that cucurbitacin-I blocked the phosphorylation of activator protein-1 (AP-1) and nuclear factor kappa-B ($NF-{\kappa}B$), which are key regulators of CD44 expression. Taken together, the data demonstrate that cucurbitacin-I regulates the AP-1 and $NF-{\kappa}B$ signaling pathways, leading to decreased CD44 expression.

Rapid Molecular Diagnosis using Real-time Nucleic Acid Sequence Based Amplification (NASBA) for Detection of Influenza A Virus Subtypes

  • Lim, Jae-Won;Lee, In-Soo;Cho, Yoon-Jung;Jin, Hyun-Woo;Choi, Yeon-Im;Lee, Hye-Young;Kim, Tae-Ue
    • Biomedical Science Letters
    • /
    • v.17 no.4
    • /
    • pp.297-304
    • /
    • 2011
  • Influenza A virus of the Orthomyxoviridae family is a contagious respiratory pathogen that continues to evolve and burden in the human public health. It is able to spread efficiently from human to human and have the potential to cause pandemics with significant morbidity and mortality. It has been estimated that every year about 500 million people are infected with this virus, causing about approximately 0.25 to 0.5 million people deaths worldwide. Influenza A viruses are classified into different subtypes by antigenicity based on their hemagglutinin (HA) and neuraminidase (NA) proteins. The sudden emergence of influenza A virus subtypes and access for epidemiological analysis of this subtypes demanded a rapid development of specific diagnostic tools. Also, rapid identification of the subtypes can help to determine the antiviral treatment, because the different subtypes have a different antiviral drug resistance patterns. In this study, our aim is to detect influenza A virus subtypes by using real-time nucleic acid sequence based amplification (NASBA) which has high sensitivity and specificity through molecular beacon. Real-time NASBA is a method that able to shorten the time compare to other molecular diagnostic tools and is performed by isothermal condition. We selected major pandemic influenza A virus subtypes, H3N2 and H5N1. Three influenza A virus gene fragments such as HA, NA and matrix protein (M) gene were targeted. M gene is distinguished influenza A virus from other influenza virus. We designed specific primers and molecular beacons for HA, NA and M gene, respectively. In brief, the results showed that the specificity of the real-time NASBA was higher than reverse transcription polymerase chain reaction (RT-PCR). In addition, time to positivity (TTP) of this method was shorter than real-time PCR. This study suggests that the rapid detection of neo-appearance pandemic influenza A virus using real-time NASBA has the potential to determine the subtypes.

Hepatoprotective and Anti-fatigue Effects of Lactic Acid Bacteria (Lactobacillus acidophilus, Bifidobacterium bifidum and Streptococcus thermophilus)

  • Yun, Ji-Hee;Kim, Yun-A;Chung, Myung-Jun;Kang, Byung-Yong;Ha, Nam-Joo
    • Toxicological Research
    • /
    • v.23 no.1
    • /
    • pp.11-17
    • /
    • 2007
  • This study was carried out to investigate the effect of LAB (Lactic acid bacteria: Lactobacillus acidophilus, Bifidobacterium bifidum and Streptococcus thermophilus) on detoxication of damaged liver in carbon tetrachloride ($CCl_4$) and ethanol (25%)-treated rats. Rats had been daily (twice a day) pre-treated with saline (0.5 ml/kg: untreated group), $CCl_4$ (0.5 ml/kg: other groups) for 6 days. At seventh day, after treating rat with $CCl_4$ and then, mixture of LAB ($10^{11}$/0.5 ml: LAB group), saline (0.5 ml/kg: untreated group, $CCl_4$ group), and biphenyl dimethyl dicarboxylate (DDB) (50 mg/kg: DDB group) were treated orally with $CCl_4$ for 8 days. Ethanol is treated as the same manner instead of $CCl_4$. To investigate the hepatoprotective effect, rats treated with $CCl_4$ and ethanol were analyzed with serum GOT and GPT level. The GOT and GPT levels of LAB group was lower than the level of $CCl_4$ and DDB group. Especially, compared with data of $CCl_4$ group, GPT activity showed statistically significant result in the significance level of p < 0.05. The LAB group treated with ethanol also showed lower level of GOT and GPT than the other control groups treated with ethanol. The triglyceride level of serum decreased more in a group treated special materials (DDB and LAB group) than ethanol group. As well, the effect of LAB on the antifatigue has been investigated. The animals (10/group) were divided into 4 groups (untreated group, Carrier group, Red-ginseng group, LAB group). Each group was given carrier (0.9 mg/0.2 ml), red ginseng extract (200 mg/kg), and mixture of LAB ($10^{11}$/0.2 ml). Special materials were given for three weeks. After finishing treating through oral, horizontal wire test, rotarod test, and forced swimming test were performed. The time of resistance to fatigue of the group, fed with mixture of LAB, was longer than the time when mice treated with red-ginseng that the effect was already revealed. The result of this study revealed that LAB could decrease hepatocelluar injury compared with rats treated orally with $CCl_4$ and ethanol, and could also decrease fatigue.

Transcriptome Analysis of Early Responsive Genes in Rice during Magnaporthe oryzae Infection

  • Wang, Yiming;Kwon, Soon Jae;Wu, Jingni;Choi, Jaeyoung;Lee, Yong-Hwan;Agrawal, Ganesh Kumar;Tamogami, Shigeru;Rakwal, Randeep;Park, Sang-Ryeol;Kim, Beom-Gi;Jung, Ki-Hong;Kang, Kyu Young;Kim, Sang Gon;Kim, Sun Tae
    • The Plant Pathology Journal
    • /
    • v.30 no.4
    • /
    • pp.343-354
    • /
    • 2014
  • Rice blast disease caused by Magnaporthe oryzae is one of the most serious diseases of cultivated rice (Oryza sativa L.) in most rice-growing regions of the world. In order to investigate early response genes in rice, we utilized the transcriptome analysis approach using a 300 K tilling microarray to rice leaves infected with compatible and incompatible M. oryzae strains. Prior to the microarray experiment, total RNA was validated by measuring the differential expression of rice defense-related marker genes (chitinase 2, barwin, PBZ1, and PR-10) by RT-PCR, and phytoalexins (sakuranetin and momilactone A) with HPLC. Microarray analysis revealed that 231 genes were up-regulated (>2 fold change, p < 0.05) in the incompatible interaction compared to the compatible one. Highly expressed genes were functionally characterized into metabolic processes and oxidation-reduction categories. The oxidative stress response was induced in both early and later infection stages. Biotic stress overview from MapMan analysis revealed that the phytohormone ethylene as well as signaling molecules jasmonic acid and salicylic acid is important for defense gene regulation. WRKY and Myb transcription factors were also involved in signal transduction processes. Additionally, receptor-like kinases were more likely associated with the defense response, and their expression patterns were validated by RT-PCR. Our results suggest that candidate genes, including receptor-like protein kinases, may play a key role in disease resistance against M. oryzae attack.

Advanced Water Treatment of High Turbidity Source by Hybrid Process of Ceramic Microfiltration and Activated Carbon Adsorption: Effect of Water-back-flushing Time and Period (세라믹 정밀여과 및 활성탄 흡착 혼성공정에 의한 고탁도 원수의 고도정수처리: 물 역세척 시간 및 주기의 영향)

  • Park, Jin-Yong;Lee, Hyuk-Chan
    • Membrane Journal
    • /
    • v.19 no.1
    • /
    • pp.7-18
    • /
    • 2009
  • In this study, we used the hybrid module that was composed of granular activated carbons (GAC) packing between module inside and outside of tubular ceramic microfiltration membrane for advanced drinking water treatment. Instead of natural organic matters (NOM) and fine inorganic particles in natural water source, modified solution was prepared with humic acid and kaolin. We were investigated effect of water-back-flushing time (BT) and water-back-flushing period (FT) to minimize membrane fouling and to enhance permeate flux (J) in the hybrid process, and tried to find the optimal operating conditions. As a result, resistance of membrane fouling ($R_f$) was slightly decreased according to increasing BT. Also, the shorter FT was the more effective to reduce $R_f$ and to enhance J because of frequent water-back-flushing. However, the optimal BT and FT conditions were 10 sec and 8 min respectively when operating costs were considered. Then, the optimal conditions derived from our experiments of modified solution were applied to lake water treatment. As a result, average treatment efficiencies of turbidity, $UV_{254}$ absorbance, and $COD_{Mn}$ were very high as 99.11%, 91.40% and 89.34%, respectively, but that of TDS was low as 30.05%.

Dual Coating Improves the Survival of Probiotic Bifidobacterium Strains during Exposure to Simulated Gastro-Intestinal Conditions (위장관내 조건에서 이중코팅 처리 된 프로바이오틱 비피도박테리움의 생존력 향상)

  • Kang, Joo Yeon;Lee, Do Kyung;Park, Jae Eun;Kim, Min Ji;Lee, Joong-Su;Seo, Jae-Gu;Chung, Myung Jun;Shin, Hea Soon;Ha, Nam Joo
    • Korean Journal of Microbiology
    • /
    • v.49 no.3
    • /
    • pp.275-281
    • /
    • 2013
  • Probiotics have been reported to benefit human health by modulating immunity, lowering cholesterol, improving lactose tolerance, and preventing some cancer. Once ingested, probiotic microorganisms have to survive harsh conditions such as low pH, protease-rich condition, and bile salts during their passage through the gastro-intestinal (GI) tract colonize and proliferate to exert their probiotic effects. The dual coating technology, by which the bacteria are doubly coated with peptides and polysaccharides in consecutive order, was developed to protect the ingested bacteria from the harsh conditions. The aim of the study was to evaluate the viable stability of a doubly coated blend of four species of Bifidobacterium by comparing its bile/acid resistance and heat viability in vitro with that of the non-coated blend. After challenges with acid, bile salts, heat, and viable cell counts (VVCs) of the dual coated and non-coated blend were determined by cultivation on agar plates or flow cytometric measurement after being stain with the BacLigtht kit$^{TM}$. The results showed that the dual coated blend was much higher resistant to the acidic or bile salt condition than the non-coated blend and heat viability was also higher, indicating that the dual coating can improve the survival of probiotic bacteria during their transit through the GI tract after consumption.

Phytosterols content of Keunnunjami germ and its antioxidative effects in adult rats (큰눈자미 배아의 식물성 스테롤 함량 및 성숙기 흰쥐에서 항산화 효과)

  • Liang, Jie;Ma, Jing Wen;Chung, Soo Im;Kang, Mi Young
    • Journal of Nutrition and Health
    • /
    • v.53 no.2
    • /
    • pp.99-110
    • /
    • 2020
  • Purpose: The rice germ fraction is a better source of protein, lipid, and fiber than the rice endosperm. Furthermore, the rice germ is rich in bioactive phytochemicals such as γ-aminobutyric acid, tocopherols, tocotrienols, phytic acid, and so on. In this study, the phytosterol content and antioxidant activity of Keunnunjami germ (KG) or normal rice germ supplement were investigated in healthy adult rats. Methods: In vitro, quantitative assessment of phytosterols, including β-sitosterol, campesterol, cycloartenol, and stigmasterol, was performed. Comparative antioxidant activities of 2 rice germs were measured based on DPPH radical scavenging activity, reducing power, and ABTS radical scavenging capacity. In vivo, male Spraque-Dawley rats (30-weeks-old) were randomly assigned a diet of normal control (NC, AIN-93M diet), AIN-93M diet supplemented with normal rice germ 3% (NG3), or AIN-93M diet supplemented with KG 3% (KG3) and fed for 8 weeks. Results: KG contained significantly higher campesterol and stigmasterol contents and antioxidant activity than normal rice germ. The KG3 group exhibited significantly lower body weight gain as well as inguinal and total white adipose tissue weights. There were no significant differences in plasma glucose, insulin, C-peptide, or homeostasis model assessment of insulin resistance level among the 3 groups. The plasma tumor necrosis factor-α concentration was significantly lower while leptin, advanced oxidation protein products, and interleukin-6 showed downward trends in the KG3 group. In addition, the superoxide dismutase level of the KG3 group was significantly higher compared to the NC and NG3 groups. Conclusion: This study indicates that KG can be considered as a valuable source of phytosterol components. Lastly, KG has strong antioxidant properties and may have potential to ameliorate elevation of proinflammatory cytokine production with age.