• Title/Summary/Keyword: acid hydrolysis condition

Search Result 143, Processing Time 0.036 seconds

Preparation and Characterization of the Hydrolyzed Protein from Shaving Scraps of Leather Waste Containing Chromium (피혁폐기물(皮革廢棄物)인 Shaving scraps으로 부터 가수분해(加水分解) 단백질(蛋白質)의 제조(製造) 및 특성(特性))

  • Kim, Won-Ju;Cho, Ju-Sik;Lee, Hong-Jae;Heo, Jong-Soo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.5 no.2
    • /
    • pp.47-56
    • /
    • 1997
  • To examine of possibility protein recycling of shaving scraps contained chrome generated from manufacturing process of leather, the characteristics of hydrolyzed protein that differently treated with MgO as alkaline agent were investigated. In alkaline hydrolysis of saving scraps treated with MgO, MgO had to be treated over 5.0% to maintain over pH 8.0 that is insoluble of chrome. Under the condition of alkaline treated with MgO, the solubility of chrome is low with about 60%. The average molecular weight of hydrolyzed proteins from shaving scraps treated with MgO was about 80~100 KD. The amino acid contents of that were largely collagen proteins such as glycine, alanine and proline, and acidic amino acids such as aspartic acid and glutatamic acid. The contents of Mg, Ca and Na in hydrolyzed protein were too much as liquid fertilizer, and chrome contents was 30~40 ppm that largely decreased in comparing with raw materials (40,000~42,000 ppm).

  • PDF

Controlling Size, Shape and Polymorph of TiO2 Nanoparticles by Temperature-Controlled Hydrothermal Treatment

  • Kwon, Do Hun;Jung, Young Hee;Kim, Yeong Il
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.3
    • /
    • pp.238-245
    • /
    • 2015
  • The crystallization and morphology change of amorphous titanias by hydrothermal treatment have been investigated. The amorphous titanias were prepared by pure water hydrolysis of two different precursors, titanium tetraisopropoxide (TTIP) and TTIP modified with acetic acid (HOAc) and characterized prior to hydrothermal treatment. In order to avoid complicate situation, the hydrothermal treatment was performed in a single solvent water with and without strong acids at various temperatures. The effects of strong acid, temperature and time were systematically investigated on the transformation of amorphous titania to crystalline TiO2 under simple hydrothermal condition. Without strong acid the titanias were transformed into only anatase phase nanoparticle regardless of precursor type, temperature and time herein used (up to 250 ℃ and 48 hours). The treatment temperature and time effected only on the crystalline size, not on the crystal phase et al. However, it was clearly revealed that the strong acids such as HNO3 and HCl catalyzed the formation of rutile phase depending on temperature. HCl was slightly better than HNO3 in this catalytic activity. The morphology of rutile TiO2 formed was also a little affected by the type of acid. The precursor modifier, HOAc slightly reduced the catalytic activity of the strong acids in rutile phase formation.

Study on Affecting Variables Appearing through Chemical Pretreatments of Poplar Wood (Populus euramericana) to Enzymatic Hydrolysis (이태리 포플러의 화학적 전처리 공정을 통한 효소가수분해 영향 인자 분석)

  • Koo, Bon-Wook;Park, Nahyun;Yeo, Hwanmyeong;Kim, Hoon;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.255-264
    • /
    • 2009
  • To evaluate the effects of chemical pretreatments of lignocellulosic biomass on enzymatic hydrolysis process, Populus euramericana was pretreated for 1 hr with 1% sulfuric acid ($H_2SO_4$) at $150^{\circ}C$ and 1% sodium hydroxide (NaOH) at $160^{\circ}C$, respectively. Before the enzymatic hydrolysis, each pretreated sample was subjected to drying process and thus finally divided into four subgroups; dried or non-dried acid pretreated samples and dried or non-dried alkali pretreated samples and chemical and physical properties of them were analyzed. Biomass degradation by acid pretreatment was determined to 6% higher compared to alkali pretreatment. By the action of acid ca. 24.5% of biomass was dissolved into solution, while alkali degraded ca. 18.6% of biomass. However, reverse results were observed in delignification rates, in which alkali pretreatment released 2% more lignin fragment from biomass to the solution than acid pretreatment. Unexpectedly, samples after both pretreatments were determined to somewhat higher crystallinity than untreated samples. This result may be explained by selective disrupture of amorphous region in cellulose during pretreatments, thus the cellulose crystallinity seems to be accumulated in the pretreated samples. SEM images revealed that pretreated samples showed relative rough and partly cracked surfaces due to the decomposition of components, but the image of acid pretreated samples which were dried was similar to that of the control. In pore size distribution, dried acid pretreated samples were similar to the control, while that in alkali pretreated samples was gradually increased as pore diameter increased. The pore volume which increased by acid pretreatment rapidly decreased by drying process. Alkali pretreatment was much more effective on enzymatic digestibility than acid pretreatment. The sample after alkali pretreatment was enzymatically hydrolyzed up to 45.8%, while only 26.9% of acid pretreated sample was digested at the same condition. The high digestibility of the sample was also influenced to the yields of monomeric sugars during enzymatic hydrolysis. In addition, drying process of pretreated samples affected detrimentally not only to digestibility but also to the yields of monomeric sugars.

Bioethanol Production from Seaweed Gelidium amansii for Separated Hydrolysis and Fermentation (SHF) (해조류 우뭇가사리 (Gelidium amansii)의 분리당화발효를 이용한 바이오에탄올의 생산)

  • Ra, Chae Hun;Lee, Hyeon Jun;Shin, Myung Kyo;Kim, Sung-Koo
    • KSBB Journal
    • /
    • v.28 no.5
    • /
    • pp.282-286
    • /
    • 2013
  • The seaweed, Gelidium amansii, was fermented to produce bioethanol. Optimal pretreatment condition was determined as 94 mM $H_2SO_4$ and 8% (w/v) seaweed slurry at $121^{\circ}C$ for 60 min. The mono sugars of 40.4 g/L with 67% of conversion from total carbohydrate of 60.6 g/L with 80 g dw/L G. amansii slurry were obtained by thermal acid hydrolysis pretreatment and enzymatic saccharification. G. amansii hydrolysate was used as the substrate for ethanol production by Kluyveromyces marxianus KCTC 7150 and Candida tropicalis KCTC 7212 using 5L fermentor. The ethanol productions by K. marxianus KCTC 7150 and C. tropicalis KCTC 7212 were 17.8 g/L with $Y_{EtOH}$ of 0.48 at 120 h and 19.3 g/L with $Y_{EtOH}$ of 0.50 at 120 h, respectively.

Production of D-Lactic Acid from DL-Lactonitrile by Pseudomonas sp. (Pseudomonas sp.에 의한 DL-Iactonitrile로부터 D-lactic acid의 생산)

  • 김현수;황인균;정남현;방원기
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.4
    • /
    • pp.373-379
    • /
    • 2002
  • By using DL-acetonitrile as enzyme inducer, 90 bacteria were isolated from a field soil. Among the isolated strains, the strain WJ-003 showed the highest activity for production of D-lactic acid from DL-lactonitrile, and was partially identified as Pseudomonas sp. The production condition of D-lactic acid from DL-lactonitrile using resting cells as an enzyme source was optimized as follows: the reaction mixture contained 10 mM of DL-lactonitrile, 20 g of wet cells in 11 of 20 mM potassium phosphate buffer (pH 7.0) and the reaction was carried out at $30^{\circ}C$. After 18 h of reaction, 0.843 g/l of D-lactic acid was produced which corresponded to a conversion ratio of 93.7% and an optical purity of 99.8%. Additionally, when 10 mM of DL-lactonitrile was added once more to the reaction mixture at 14 h, 1.64 g/1 of D-lactic acid was produced after 28 h. In this experiment, the conversion ratio was 91.1% and optical purity 99.8%.

Production of Levulinic Acid from Chitosan by Acidic-Hydrothermal Reaction (산성 수열반응을 통한 키토산으로부터 레불린산의 생산)

  • Jeong, Gwi-Taek
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.355-359
    • /
    • 2014
  • Recently, many chemicals produced from renewable resources such as lignocellulosics, micro-algae and marine macro-algae, were introduced to chemical industry. Chitin/chitosan is secondly abundant feedstock on Earth. It is easily obtained from crusraceans' shells such as crab, shrimp and insects. In this work, we performed the acidic-hydrothermal hydrolysis to produce levulinic acid from chitosan using statistical approach. By design of response surface methodology, the effect of reaction temperature, catalyst amount, and reaction time and their reciprocal interactions were investigated. As a result, higher reaction temperature and catalyst amount increased the higher concentration of levulinic acid. However, reaction time did not caused large increase of levulinic acid after some reaction period. Levulinic acid of 2.7 g/L produced from chitosan in the optimized condition of reaction temperature of $175^{\circ}C$, sulfuric acid of 2.4% and reaction time of 40.7 min.

Effect of Low-Molecularization on Rheological Properties of Alginate (알긴산의 물성에 미치는 저분자화의 영향)

  • LEE Dong-Soo;KIM Hyeung-Rak;PYEUN Jae-Hyeung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.1
    • /
    • pp.82-89
    • /
    • 1998
  • Partial hydrolyzing condition for low-molecularized alginate and rheological properties such as viscosity, solubility, emulsitying ability, oil absorption capacity, bile acids binding and metal ion binding of the low-molecularized alginates from the sea mustard ( Undaria pinnatifida) and giant kelp (Macrocystis pyrifera) were investigated. Alginate from sea mustard was regularly hydrolyzed with the increase of HCl concentration in the range of 0.2 N to 0.5 N and with the prolonged reaction time at $100^{\circ}C$. The molecular weight of alginate was decreased to a part of 100 after hydrolysis for 50 min with 0.3 N HCl. The ratio of mannuronate to guluronate was increased with the acid hydrolysis and total yield was estimated to be $75\%\~80\%$. Low-molecularization of alginate was featured in the apparent decrease of viscosity, whereas solubility, emulsifying ability, and bile acids binding ability were increased with the low-molecularization. Oil absorption capacity of the acid$\cdot$alkali soluble alginate was slightly higher than that of the water soluble alginate. Metal ion binding capacity was the highest in acid$\cdot$alkali soluble alginate, and decreased with the low-molecularization.

  • PDF

Studies on the Immobilization of Lipase by Adsorption Method (흡착법에 의한 Lipase의 고정화)

  • Park, Jong-Hack;Lee, Young-Chun
    • Korean Journal of Food Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.75-80
    • /
    • 1985
  • To utilize lipase obtained from Candida cylindracea for lipid hydrolysis, methods to immobilize lipase by adsorption and reaction characteristics of the immobilized lipase by adsorption were investigated. Among the tested adsorbents, silica gel was selected as a suitable adsorbent. The optimum condition for adsorption of lipase was when 47.5 units of lipase were adsorbed to 1.6g of silica gel at pH7.0 and $5^{\circ}C$ for 100 min. Optimum pH and temperature for activity of the immobilized lipase were at $37^{\circ}C$ and pH7.0, which were same as the soluble lipase. Optimum enzyme concentration of the immobilized lipase were 30g for milk fat and 80g for olive oil, whereas those of the soluble lipase were 800 units for milk fat and 1200 units for olive oil. The optimum substrate concentrations of the immobilized and soluble lipases were 20% lipid, regardless of lipid types. Rapid hydrolysis of milk fat was observed with the soluble lipase for the initial 4 hours and with the immobilized lipase for the initial 8 hours. The immobilized lipase produced same amount of capric acid as the soluble lipase, but more myristic acid and less butyric acid than the soluble lipase.

  • PDF

Changes of Silk Protein Compositions by Solubility Condition (용해조건에 따른 견 단백질의 조성 변화)

  • Yeo, Joo-Hong;Lee, Kwang-Gill;Lee, Yong-Woo;Nam, Jin;Kim, Sun-Yeou
    • Analytical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.306-311
    • /
    • 1999
  • Changes of silk protein compositions of average molecular weight (Mw) and free amino acid composition to different solubility conditions were studied by SDS-polyacrylamide electropholesis, gel permeation chromatography (GPC), and free amino acid analysis method. We can not detected average molecular weight distribution of different hydrochloric acid (HCl) conditions as SDS-polyacrylamide method, but as using GPC method, molecular weight distribution of 2N-HCl, 1N-HCl and 0.5N-HCl (3 hrs at $110^{\circ}C$ treated) are confirmed Mw 800, 1,500 and 3,700, respectively. The average molecular weight of calcium chroride and calcium chloride-enzyme treated samples are shown Mw 46,800 and 12,500, respectively. The degree of hydrolysis and the composition of the free amino acid in the fibroin hydrolysates effected significantly composition of free amino acids of the fibroin powder. The increase of the degree of hydrolysis and ratio of free amino acids and oligopeptides were found to be directly related to the concentration of hydrochloric acid and treatment of enzyme, resulting in the increase of water solubility.

  • PDF

Preparation of (S)-(+)-Pranidipine by Optical Resolution (광학 분할에 의한 (S)-(+)-Pranidipine의 제조방법)

  • Baek, Du-Jong;Yoon, Ji Hye;Kim, Moon-Sik
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.6
    • /
    • pp.488-492
    • /
    • 2015
  • In this study, the effective preparation method of (S)-(+)-pranidipine, the active component of antihypertensive drug as a calcium channel blocker, was developed using optical resolution. The racemic monocarboxylic acid 5 obtained by the hydrolysis of (±)-pranidipine was mixed with optically active quinidine to form salts, and the insoluble diastereomeric salt was collected and successive treatment with base and acid furnished (R)-(-)-carboxylic acid 7. (S)-(+)-Pranidipine was prepared by esterification of this acid with cinnamyl alcohol, and the analysis by chiral HPLC showed 100% enantiomeric excess (ee). This process would be industrially very useful to prepare chiral (S)-(+)-pranidipine, since the use of strong base and anhydrous solvents, and ultra-low temperature condition were excluded in this process.