• Title/Summary/Keyword: achievable throughput

Search Result 33, Processing Time 0.022 seconds

Analysis of Joint Multiband Sensing-Time M-QAM Signal Detection in Cognitive Radios

  • Tariq, Sana;Ghafoor, Abdul;Farooq, Salma Zainab
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.892-899
    • /
    • 2012
  • We analyze a wideband spectrum in a cognitive radio (CR) network by employing the optimal adaptive multiband sensing-time joint detection framework. This framework detects a wideband M-ary quadrature amplitude modulation (M-QAM) primary signal over multiple nonoverlapping narrowband Gaussian channels, using the energy detection technique so as to maximize the throughput in CR networks while limiting interference with the primary network. The signal detection problem is formulated as an optimization problem to maximize the aggregate achievable secondary throughput capacity by jointly optimizing the sensing duration and individual detection thresholds under the overall interference imposed on the primary network. It is shown that the detection problems can be solved as convex optimization problems if certain practical constraints are applied. Simulation results show that the framework under consideration achieves much better performance for M-QAM than for binary phase-shift keying or any real modulation scheme.

Delay Analysis of Carrier Sense Multiple Access with Collision Resolution

  • Choi, Hyun-Ho;Lee, In-Ho;Lee, Howon
    • Journal of Communications and Networks
    • /
    • v.17 no.3
    • /
    • pp.275-285
    • /
    • 2015
  • To improve the efficiency of carrier sense multiple access (CSMA)-based medium access control (MAC) protocols, CSMA with collision resolution (CSMA/CR) has been proposed. In the CSMA/CR, a transmitting station can detect a collision by employing additional sensing after the start of a data transmission and then resolve the next collision that might occur by broadcasting a jam signal during a collision detection (CD) period. In this paper, we analyze the delay of a CSMA/CR based on a generic p- persistent CSMA model and obtain the minimum achievable delay of the CSMA/CR by finding the optimal length of the CD period according to the number of contending stations. Through this delay analysis, we also investigate the throughput-delay characteristics of the CSMA/CR protocol according to various parameters. Analysis and simulation results show that the CSMA/CR has a considerably lower delay and its throughput-delay characteristic is significantly improved than the conventional CSMA/CA and wireless CSMA/CD protocols.

Unified Model for Performance Analysis of IEEE 802.11 Ad Hoc Networks in Unsaturated Conditions

  • Xu, Changchun;Gao, Jingdong;Xu, Yanyi;He, Jianhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.683-701
    • /
    • 2012
  • IEEE 802.11 standard has achieved huge success in the past decade and is still under development to provide higher physical data rate and better quality of service (QoS). An important problem for the development and optimization of IEEE 802.11 networks is the modeling of the MAC layer channel access protocol. Although there are already many theoretic analysis for the 802.11 MAC protocol in the literature, most of the models focus on the saturated traffic and assume infinite buffer at the MAC layer. In this paper we develop a unified analytical model for IEEE 802.11 MAC protocol in ad hoc networks. The impacts of channel access parameters, traffic rate and buffer size at the MAC layer are modeled with the assistance of a generalized Markov chain and an M/G/1/K queue model. The performance of throughput, packet delivery delay and dropping probability can be achieved. Extensive simulations show the analytical model is highly accurate. From the analytical model it is shown that for practical buffer configuration (e.g. buffer size larger than one), we can maximize the total throughput and reduce the packet blocking probability (due to limited buffer size) and the average queuing delay to zero by effectively controlling the offered load. The average MAC layer service delay as well as its standard deviation, is also much lower than that in saturated conditions and has an upper bound. It is also observed that the optimal load is very close to the maximum achievable throughput regardless of the number of stations or buffer size. Moreover, the model is scalable for performance analysis of 802.11e in unsaturated conditions and 802.11 ad hoc networks with heterogenous traffic flows.

A Stability Issue on Controlled ALOHA System with Capture Channel (신호 포획현상을 가지는 알로하 시스템의 안정성 고찰)

  • 곽경섭
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.12
    • /
    • pp.1855-1869
    • /
    • 1993
  • For the traditional ALOHA system without capture, the Markov chain obtained using the number of backlogged users at each slot if shown to be non-ergodic. So the infinite population ALOHA with fixed retransmission probabilities is unstable for any choice of the arrival rates and retransmission probabilities. The capture ALOHA system of also shown to be unstable for any arrival rate unless it has perfect. In this paper, we study a stabilization policy for capture ALOHA system that controls the retransmission probabilities and prove the stability of its multidimensional Markovian model by empolying a continuous Lyapunov function, and thus identify the stability region. We also study a delay performance through computer simulation th show the stability for any input rate below the maximum achievable channel throughput.

  • PDF

Capacity Analysis of MMR(Mobile Multihop Relay) System (MMR(Mobile Multihop Relay) 시스템의 용량 분석)

  • Lee, Kang-Won;Kook, Kwang-Ho;Choi, Song-In
    • IE interfaces
    • /
    • v.21 no.2
    • /
    • pp.189-197
    • /
    • 2008
  • This study shows achievable capacity gain from the MMR system. Relay stations are placed along the cell boundary in tiers. We can have as many tiers of relays and as many relays in each tier as we want. A model is developed, which can estimate the system capacity varying the number of relays in each tier and the bandwidths allocated to the BS and the RS. It is shown that maximum capacity increases are 21.5% and 18.9% when we have relays in the first tier only and in the first and the second tiers, respectively.

The control of a Mobile Inverted Pendulum with EtherCAT (이더캣을 이용한 모바일 역진자 시스템의 제어)

  • Han, Jong-Ho;Ryu, Tae-Yeol;Lee, Jang-Myung
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.3
    • /
    • pp.161-170
    • /
    • 2012
  • The Industrial Ethernet technology enables advanced control architectures and offers several advantages for high precision multiple motors actuation. This paper presents the implementation and analysis of a motor drive with EtherCAT, an industrial standard for real time Ethernet. Considering the characteristics of the implemented software and the network interface, the motion and time-response of motor actuation for the networked Mobile Inverted Pendulum have been analyzed. Using the analysis with the task execution times measured from the developed drive, the performance characteristics of the drive in respect of the maximum achievable throughput have been verified by comparing to the conventional RS232.

Unified Optimal Power Allocation Strategy for MIMO Candidates in 3GPP HSDPA

  • Kim, Sung-Jin James;Kim, Ho-Jin;Lee, Kwang-Bok
    • ETRI Journal
    • /
    • v.27 no.6
    • /
    • pp.768-776
    • /
    • 2005
  • We compare the achievable throughput of time division multiple access (TDMA) multiple-input multiple-output (MIMO) schemes illustrated in the 3rd Generation Partnership Project (3GPP) MIMO technical report, versus the sum-rate capacity of space-time multiple access (STMA). These schemes have been proposed to improve the 3GPP high speed downlink packet access (HSDPA) channel by employing multiple antennas at both the base station and mobile stations. Our comparisons are performed in multi-user environments and are conducted using TDMA such as Qualcomm's High Data Rate and HSDPA, which is a simpler technique than STMA. Furthermore, we present the unified optimal power allocation strategy for HSDPA MIMO schemes by exploiting the similarity of multiple antenna systems and multi-user channel problems.

  • PDF

Exploiting Multichannel Diversity in Spectrum Sharing Systems Using Optimal Stopping Rule

  • Xu, Yuhua;Wu, Qihui;Wang, Jinlong;Anpalagan, Alagan;Xu, Yitao
    • ETRI Journal
    • /
    • v.34 no.2
    • /
    • pp.272-275
    • /
    • 2012
  • This letter studies the problem of exploiting multichannel diversity in a spectrum sharing system, where the secondary user (SU) sequentially explores channel state information on the licensed channels with time consumption. To maximize the expected achievable throughput for the SU, we formulate this problem as an optimal stopping problem, whose objective is to choose the right channel to stop exploration based on the observed signal-to-noise ratio sequence. Moreover, we propose a myopic but optimal rule, called one-stage look-ahead rule, to solve the stopping problem.

On the (n, m, k)-Cast Capacity of Wireless Ad Hoc Networks

  • Kim, Hyun-Chul;Sadjadpour, Hamid R.;Garcia-Luna-Aceves, Jose Joaquin
    • Journal of Communications and Networks
    • /
    • v.13 no.5
    • /
    • pp.511-517
    • /
    • 2011
  • The capacity of wireless ad-hoc networks is analyzed for all kinds of information dissemination based on single and multiple packet reception schemes under the physical model. To represent the general information dissemination scheme, we use (n, m, k)-cast model [1] where n, m, and k (k ${\leq}$ m) are the number of nodes, destinations and closest destinations that actually receive packets from the source in each (n, m, k)-cast group, respectively. We first consider point-to-point communication, which implies single packet reception between transmitter-receiver pairs and compute the (n, m, k)-cast communications. Next, the achievable throughput capacity is computed when receiver nodes are endowed with multipacket reception (MPR) capability. We adopt maximum likelihood decoding (MLD) and successive interference cancellation as optimal and suboptimal decoding schemes for MPR. We also demonstrate that physical and protocol models for MPR render the same capacity when we utilize MLD for decoding.

Interference Aware Receiver Filtering for Wireless Ad Hoc Networks (무선 애드혹 네트워크에서의 간섭 제어 수신 기법)

  • Shin, Sungpil;Lee, Byungju;Park, Sunho;Shim, Byonghyo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.9-15
    • /
    • 2013
  • Recent works on ad hoc network study have shown that achievable throughput can be made to scale linearly with the number of receive antennas even if the transmitter has only a single antenna. In this paper, we propose a non-parametric linear minimum mean square error (MMSE) receiver for achieving further gain in performance when the channel state information at receiver (CSIR) of interferers is imperfect. The key feature to make our approach effective is to exploit the autocorrelation of the received signal. In fact, by incorporating the desired channel information on top of the observations including interference and noise only, the proposed method achieves large fraction of the optimal MMSE transmission capacity without transmission rate loss. From the SINR analysis as well as transmission capacity simulations in realistic ad hoc network system, we show that the proposed non-parametric linear MMSE receiver brings substantial performance gain over existing multiple receive antenna algorithms.