DOI QR코드

DOI QR Code

Interference Aware Receiver Filtering for Wireless Ad Hoc Networks

무선 애드혹 네트워크에서의 간섭 제어 수신 기법

  • 신성필 (고려대학교 정보통신대학 컴퓨터.전파통신공학과) ;
  • 이병주 (고려대학교 정보통신대학 컴퓨터.전파통신공학과) ;
  • 박선호 (고려대학교 정보통신대학 컴퓨터.전파통신공학과) ;
  • 심병효 (고려대학교 정보통신대학 컴퓨터.전파통신공학과)
  • Received : 2012.10.19
  • Published : 2013.03.25

Abstract

Recent works on ad hoc network study have shown that achievable throughput can be made to scale linearly with the number of receive antennas even if the transmitter has only a single antenna. In this paper, we propose a non-parametric linear minimum mean square error (MMSE) receiver for achieving further gain in performance when the channel state information at receiver (CSIR) of interferers is imperfect. The key feature to make our approach effective is to exploit the autocorrelation of the received signal. In fact, by incorporating the desired channel information on top of the observations including interference and noise only, the proposed method achieves large fraction of the optimal MMSE transmission capacity without transmission rate loss. From the SINR analysis as well as transmission capacity simulations in realistic ad hoc network system, we show that the proposed non-parametric linear MMSE receiver brings substantial performance gain over existing multiple receive antenna algorithms.

근래 애드혹 네트워크에서 송신 노드가 하나의 안테나만을 가지고 있을 지라도 다수의 수신 안테나로 선형적인 네트워크 throughput에 근접한 값을 얻을 수 있음이 보여졌다. 본 논문에서는 수신 노드에서 채널 상태 정보 (channel state information at reciever, CSIR)가 주어지지 않았을 때, 비모수 기반 선형 평균 제곱오차 (MMSE) 수신기를 사용하여 안테나 수에 비례하는 선형 이득을 얻는 수신 기법을 제안한다. 제안하는 방법에서는 간섭과 노이즈의 공분산에 관심 있는 채널 정보를 포함하여 전송률의 손실 없이 최적의 MMSE 전송 용량에 근접한 결과를 얻는다. 네트워크 전송 용량에 대한 분석과 모의실험을 통해 제안하는 비모수 기반의 선형 MMSE 수신 기법이 기존의 알고리즘들보다 우수한 성능을 가질 수 있음을 확인할 수 있다.

Keywords

References

  1. J. G. Andrews, S. Weber, and M. Haenggi, "Ad hoc networks: To spread or not to spread", IEEE Commun. Mag., vol. 45, no. 12, pp. 8491, Dec. 2007.
  2. A. Hunter, J. G. Andrews, and S. Weber, "The transmission capacity of ad hoc networks with spatial diversity," IEEE Trans. Wireless Commun., vol. 7, no. 12, pp. 5058-5071, Dec. 2008. https://doi.org/10.1109/T-WC.2008.071047
  3. K. Huang, J. G. Andrews, D. Guo, R. W. Heath, Jr., and R. Berry, "Spatial interference cancellation for multi-antenna mobile ad hoc networks," IEEE Trans. Inf. Theory, vol. 58, no. 3, pp. 1660-1676, March 2012. https://doi.org/10.1109/TIT.2011.2178140
  4. O. Ai, C. Cardinal, and F. Gagnon, "Performance of optimum combining in a Poisson field of interferers and Rayleigh fading channels," IEEE Trans. Wireless Commun., vol. 9, no. 8, pp. 2461-2467, Aug. 2010. https://doi.org/10.1109/TWC.2010.061810.090109
  5. N. Jindal, J. G. Andrews, and S. weber, "Multi-antenna communication in ad hoc networks: achieving MIMO gains with SIMO transmission," IEEE Trans. Comm., vol. 59, no. 2, pp. 529-540, Feb. 2011. https://doi.org/10.1109/TCOMM.2010.120710.090793
  6. E. Sousa, "Performance of a spread spectrum packet radio network link in a Poisson field of interferers," IEEE Trans. Inf. Theory, vol. 38, no. 6, pp. 1743-1754, Nov. 1992. https://doi.org/10.1109/18.165447
  7. J. Ilow and D. Hatzinakos, "Analytic alpha stable noise modeling in a poisson field of interferers or scatterers," IEEE Trans. Sig. Proc., vol. 46, no. 6, pp. 1601-1611, June 1998. https://doi.org/10.1109/78.678475
  8. S. Weber, J. G. Andrews, and N. Jindal, "An overview of the transmission capacity of wireless networks," IEEE Trans. Comm., vol. 58, no. 12, pp. 3593-3604, Dec. 2010. https://doi.org/10.1109/TCOMM.2010.093010.090478
  9. S. Weber, X. Yang, J. G. Andrews, and G. de Veciana, "Transmission capacity of wireless ad hoc networks with outage constraints," IEEE Trans. Inf. Theory, vol. 51, no. 12, pp. 4091-4102, Dec. 2005. https://doi.org/10.1109/TIT.2005.858939
  10. J. Blomer and N. Jindal, "Transmission capacity of wireless ad hoc networks: successive interference cancellation vs. joint detection," Proc. IEEE Intl. Conf. Commun. (ICC), Dresden, Germany, June 2009.
  11. B. Chen and M. Gans, "MIMO communications in ad hoc networks," IEEE Trans. Sig. Proc., vol. 54, no. 7, pp. 2773-2783, July 2006. https://doi.org/10.1109/TSP.2006.874842
  12. S. Govindasamy, D. W. Bliss, and D. H. Staelin, "Spectral efficiency in single-hop ad-hoc network wireless netowrks with interference using adaptive antenna arrays," IEEE J. Sel. Areas Commun., vol. 25, no. 7, pp. 1358-1369, Sep. 2007. https://doi.org/10.1109/JSAC.2007.070909
  13. H. Cox, R. Zeskind, and M. Owen, "Robust adaptive beamforming," IEEE Trans. Acoust., Speech, Signal Process., vol.35, pp. 1365-1375, 1987. https://doi.org/10.1109/TASSP.1987.1165054
  14. I. Reed, J. Mallet, and L. Brennan, "Rapid convergence rate in adaptive arrays," IEEE Trans. Aerospace Electron. Syst., vol. 10, no. 6, pp. 853-863, Nov. 1974.
  15. S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice Hall, 1998.