• Title/Summary/Keyword: accurate prediction

Search Result 2,185, Processing Time 0.039 seconds

Development of Unfolding Energy Spectrum with Clinical Linear Accelerator based on Transmission Data (물질투과율 측정정보 기반 의료용 선형가속기의 에너지스펙트럼 유도기술 개발)

  • Choi, Hyun Joon;Park, Hyo Jun;Yoo, Do Hyeon;Kim, Byoung-Chul;Yi, Chul-Young;Min, Chul Hee
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.1
    • /
    • pp.41-47
    • /
    • 2016
  • Background: For the accurate dose assessment in radiation therapy, energy spectrum of the photon beam generated from the linac head is essential. The aim of this study is to develop the technique to accurately unfolding the energy spectrum with the transmission analysis method. Materials and Methods: Clinical linear accelerator and Monet Carlo method was employed to evaluate the transmission signals according to the thickness of the observer material, and then the response function of the ion chamber response was determined with the mono energy beam. Finally the energy spectrum was unfolded with HEPROW program. Elekta Synergy Flatform and Geant4 tool kits was used in this study. Results and Discussion: In the comparison between calculated and measured transmission signals using aluminum alloy as an attenuator, root mean squared error was 0.43%. In the comparison between unfolded spectrum using HEPROW program and calculated spectrum using Geant4, the difference of peak and mean energy were 0.066 and 0.03 MeV, respectively. However, for the accurate prediction of the energy spectrum, additional experiment with various type of material and improvement of the unfolding program is required. Conclusion: In this research, it is demonstrated that unfolding spectra technique could be used in megavoltage photon beam with aluminum alloy and HEPROW program.

Development of simple tools for algal bloom diagnosis in agricultural lakes (농업용 호소의 조류 발생 진단을 위한 간편 도구의 개발)

  • Nam, Gui-Sook;Lee, Seung-Heon;Jo, Hyun-Jung;Park, Joo-Hyun;Cho, Young-Cheol
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.3
    • /
    • pp.433-445
    • /
    • 2019
  • This study was designed to develop simple tools to easily and efficiently predict the occurrence of algal bloom in agricultural lakes. Physicochemical water quality parameters were examined to reflect the phytoplankton productivity in 182 samples collected from 15 agricultural lakes from April to October 2018. Total phytoplankton abundance was significantly correlated with chlorophyll-a (Chl-a) (r=0.666) and Secchi depth (SD) (r= -0.351). The abundances of cyanobacteria and harmful cyanobacteria were also correlated with Chl-a (r=0.664, r=0.353) and SD (r= -0.340, r= -0.338), respectively, but not with total nitrogen (TN) and total phosphorus (TP). The Chl-a concentration was correlated with SD (r= -0.434), showing a higher similarity than phytoplankton abundance. Therefore, Chl-a and SD were selected as diagnostic factors for algal bloom prediction, instead of analyzing the standing crop of harmful cyanobacteria used in algae alarm systems. Specifically, accurate diagnoses were made using realtime SD measurements. The algal bloom diagnostic tool is an inverse cone-shaped container with an algal bloom diagnosis chart that modified SD and turbidity measurement methods. Lake water was collected to observe the number of rings visible in the container or the number indicated in each ring, depending on the degree of algal bloom,and to determine the final stage of algal blooming by comparison to the colorimetric level on the diagnosis chart. For an accurate diagnosis, we presented 4-step diagnostic criteria based on the concentration of Chl-a and the number of rings and a fan-shaped algal bloom diagnosis chart with Hexa code names. This tool eliminated the variables and errors of previous methods and the results were easily interpreted. This study is expected to facilitate the diagnosis of algal bloom in agricultural lakes and the establishment of an efficient algal bloom management plan.

Prediction of infectious diseases using multiple web data and LSTM (다중 웹 데이터와 LSTM을 사용한 전염병 예측)

  • Kim, Yeongha;Kim, Inhwan;Jang, Beakcheol
    • Journal of Internet Computing and Services
    • /
    • v.21 no.5
    • /
    • pp.139-148
    • /
    • 2020
  • Infectious diseases have long plagued mankind, and predicting and preventing them has been a big challenge for mankind. For this reasen, various studies have been conducted so far to predict infectious diseases. Most of the early studies relied on epidemiological data from the Centers for Disease Control and Prevention (CDC), and the problem was that the data provided by the CDC was updated only once a week, making it difficult to predict the number of real-time disease outbreaks. However, with the emergence of various Internet media due to the recent development of IT technology, studies have been conducted to predict the occurrence of infectious diseases through web data, and most of the studies we have researched have been using single Web data to predict diseases. However, disease forecasting through a single Web data has the disadvantage of having difficulty collecting large amounts of learning data and making accurate predictions through models for recent outbreaks such as "COVID-19". Thus, we would like to demonstrate through experiments that models that use multiple Web data to predict the occurrence of infectious diseases through LSTM models are more accurate than those that use single Web data and suggest models suitable for predicting infectious diseases. In this experiment, we predicted the occurrence of "Malaria" and "Epidemic-parotitis" using a single web data model and the model we propose. A total of 104 weeks of NEWS, SNS, and search query data were collected, of which 75 weeks were used as learning data and 29 weeks were used as verification data. In the experiment we predicted verification data using our proposed model and single web data, Pearson correlation coefficient for the predicted results of our proposed model showed the highest similarity at 0.94, 0.86, and RMSE was also the lowest at 0.19, 0.07.

Estimation of Surface fCO2 in the Southwest East Sea using Machine Learning Techniques (기계학습법을 이용한 동해 남서부해역의 표층 이산화탄소분압(fCO2) 추정)

  • HAHM, DOSHIK;PARK, SOYEONA;CHOI, SANG-HWA;KANG, DONG-JIN;RHO, TAEKEUN;LEE, TONGSUP
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.3
    • /
    • pp.375-388
    • /
    • 2019
  • Accurate evaluation of sea-to-air $CO_2$ flux and its variability is crucial information to the understanding of global carbon cycle and the prediction of atmospheric $CO_2$ concentration. $fCO_2$ observations are sparse in space and time in the East Sea. In this study, we derived high resolution time series of surface $fCO_2$ values in the southwest East Sea, by feeding sea surface temperature (SST), salinity (SSS), chlorophyll-a (CHL), and mixed layer depth (MLD) values, from either satellite-observations or numerical model outputs, to three machine learning models. The root mean square error of the best performing model, a Random Forest (RF) model, was $7.1{\mu}atm$. Important parameters in predicting $fCO_2$ in the RF model were SST and SSS along with time information; CHL and MLD were much less important than the other parameters. The net $CO_2$ flux in the southwest East Sea, calculated from the $fCO_2$ predicted by the RF model, was $-0.76{\pm}1.15mol\;m^{-2}yr^{-1}$, close to the lower bound of the previous estimates in the range of $-0.66{\sim}-2.47mol\;m^{-2}yr^{-1}$. The time series of $fCO_2$ predicted by the RF model showed a significant variation even in a short time interval of a week. For accurate evaluation of the $CO_2$ flux in the Ulleung Basin, it is necessary to conduct high resolution in situ observations in spring when $fCO_2$ changes rapidly.

Differences in Ability to Predict the Success of Motor Action According to Dance Expertise - Focusing on Pirouette En Dehors (무용 숙련성에 따른 동작결과예측 능력의 차이: 삐루엣 앙 디올 동작을 중심으로)

  • Han, Siwan;Ryu, Je-Kwang;Yi, Woojong;Yang, Jonghyun
    • Korean Journal of Cognitive Science
    • /
    • v.29 no.2
    • /
    • pp.121-135
    • /
    • 2018
  • Dancers' motions are perceived by observers through visual processes with visual information forming the basis for the observers' appreciation and evaluation of the dancers' motions. There have been many discussions as to whether or not observers' personal athletic capabilities form an essential basis for accurate assessment of the motions of others but, so far, no valid conclusions have been reached. The purpose of this study is to investigate how the ability to predict motions of others varies depending on the athletic expertise of the observers. Participants of this research were ballet dancers of varying athletic expertise. Twenty seven participants were divided into three groups with nine in each: beginners, intermediate experts and experts. The participants watched the same dance video and then evaluated whether the motion would be successful or not. The movement related visual information required to evaluate the success of the motion was systematically adjusted by controlling the length of the video. Using the temporal occlusion method, this study measured the response accuracy of the participants by category of expertise. Under the circumstance with insufficient visual information to utilize, the experts showed higher rates of correct response than the intermediate experts and the beginners. The beginners showed higher rates of wrong response than the experts and the intermediate experts. These results showed that the ability to predict success or failure of a dance motion varied depending on motion expertise of the observers, although they had similar level of expertise in perception. Participants considered to have high athletic expertise showed high prediction ability on the result of the motion. In addition, high expertise in perception reduced the likelihood that participants would make hasty responses under the circumstance with insufficient information and helped to reduce wrong response rate. In conclusion, this study showed that motor expertise and perceptual expertise contribute to prediction accuracy of observed motions.

Performance effectiveness of pediatric index of mortality 2 (PIM2) and pediatricrisk of mortality III (PRISM III) in pediatric patients with intensive care in single institution: Retrospective study (단일 병원에서 소아 중환자의 예후인자 예측을 위한 PIM2 (pediatric index of mortality 2)와 PRIMS III (pediatric risk of mortality)의 유효성 평가 - 후향적 조사 -)

  • Hwang, Hui Seung;Lee, Na Young;Han, Seung Beom;Kwak, Ga Young;Lee, Soo Young;Chung, Seung Yun;Kang, Jin Han;Jeong, Dae Chul
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.11
    • /
    • pp.1158-1164
    • /
    • 2008
  • Purpose : To investigate the discriminative ability of pediatric index of mortality 2 (PIM2) and pediatric risk of mortality III (PRISM III) in predicting mortality in children admitted into the intensive care unit (ICU). Methods : We retrospectively analyzed variables of PIM2 and PRISM III based on medical records with children cared for in a single hospital ICU from January 2003 to December 2007. Exclusions were children who died within 2 h of admission into ICU or hopeless discharge. We used Students t test and ANOVA for general characteristics and for correlation between survivors and non-survivors for variables of PIM2 and PRISM III. In addition, we performed multiple logistic regression analysis for Hosmer-Lemeshow goodness-of-fit, receiver operating characteristic curve (ROC) for discrimination, and calculated standardized mortality ratio (SMR) for estimation of prediction. Results : We collected 193 medical records but analyzed 190 events because three children died within 2 h of ICU admission. The variables of PIM2 correlated with survival, except for the presence of post-procedure and low risk. In PRISM III, there was a significant correlation for cardiovascular/neurologic signs, arterial blood gas analysis but not for biochemical and hematologic data. Discriminatory performance by ROC showed an area under the curve 0.858 (95% confidence interval; 0.779-0.938) for PIM2, 0.798 (95% CI; 0.686-0.891) for PRISM III, respectively. Further, SMR was calculated approximately as 1 for the 2 systems, and multiple logistic regression analysis showed ${\chi}^2(13)=14.986$, P=0.308 for PIM2, ${\chi}^2(13)=12.899$, P=0.456 for PRISM III in Hosmer-Lemeshow goodness-of-fit. However, PIM2 was significant for PRISM III in the likelihood ratio test (${\chi}^2(4)=55.3$, P<0.01). Conclusion : We identified two acceptable scoring systems (PRISM III, PIM2) for the prediction of mortality in children admitted into the ICU. PIM2 was more accurate and had a better fit than PRISM III on the model tested.

Multi-task Learning Based Tropical Cyclone Intensity Monitoring and Forecasting through Fusion of Geostationary Satellite Data and Numerical Forecasting Model Output (정지궤도 기상위성 및 수치예보모델 융합을 통한 Multi-task Learning 기반 태풍 강도 실시간 추정 및 예측)

  • Lee, Juhyun;Yoo, Cheolhee;Im, Jungho;Shin, Yeji;Cho, Dongjin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1037-1051
    • /
    • 2020
  • The accurate monitoring and forecasting of the intensity of tropical cyclones (TCs) are able to effectively reduce the overall costs of disaster management. In this study, we proposed a multi-task learning (MTL) based deep learning model for real-time TC intensity estimation and forecasting with the lead time of 6-12 hours following the event, based on the fusion of geostationary satellite images and numerical forecast model output. A total of 142 TCs which developed in the Northwest Pacific from 2011 to 2016 were used in this study. The Communications system, the Ocean and Meteorological Satellite (COMS) Meteorological Imager (MI) data were used to extract the images of typhoons, and the Climate Forecast System version 2 (CFSv2) provided by the National Center of Environmental Prediction (NCEP) was employed to extract air and ocean forecasting data. This study suggested two schemes with different input variables to the MTL models. Scheme 1 used only satellite-based input data while scheme 2 used both satellite images and numerical forecast modeling. As a result of real-time TC intensity estimation, Both schemes exhibited similar performance. For TC intensity forecasting with the lead time of 6 and 12 hours, scheme 2 improved the performance by 13% and 16%, respectively, in terms of the root mean squared error (RMSE) when compared to scheme 1. Relative root mean squared errors(rRMSE) for most intensity levels were lessthan 30%. The lower mean absolute error (MAE) and RMSE were found for the lower intensity levels of TCs. In the test results of the typhoon HALONG in 2014, scheme 1 tended to overestimate the intensity by about 20 kts at the early development stage. Scheme 2 slightly reduced the error, resulting in an overestimation by about 5 kts. The MTL models reduced the computational cost about 300% when compared to the single-tasking model, which suggested the feasibility of the rapid production of TC intensity forecasts.

Predicting the Progression of Chronic Renal Failure using Serum Creatinine factored for Height (소아 만성신부전의 진행 예측에 관한 연구)

  • Kim, Kyo-Sun;We, Harmon
    • Childhood Kidney Diseases
    • /
    • v.4 no.2
    • /
    • pp.144-153
    • /
    • 2000
  • Purpose : Effects to predict tile progression of chronic renal failure (CRF) in children, using mathematical models based on transformations of serum creatinine (Scr) concentration, have failed. Error may be introduced by age-related variations in creatinine production rate. Height (Ht) is a reliable reference for creatinine production in children. Thus, Scr, factored for Ht, could provide a more accurate predictive model. We examined this hypothesis. Methods : The progression of of was detected in 63 children who proceeded to end-stage renal disease. Derivatives of Scr, including 1/Scr, log Scr & Ht/Scr, were defined fir the period Scr was between 2 and 5 mg/dl. Regression equation were used to predict the time, in months, to Scr > 10 mg/dl. The prediction error (PE) was defined as the predicted time minus actual time for each Scr transformation. Result : The PE for Ht/Scr was lower than the PE for either 1/Scr or log Scr (median: -0.01, -2.0 & +10.6 mos respectively; P<0.0001). For children with congenital renal diseases, the PE for Ht/Scr was also lower than for the other two transformations (median: -1.2, -3.2 & +8.2 mos respectively; P<0.0001). However, the PEs for children with glomerular diseases was not as clearly different (median: +0.9, +0.5 & +9.9 respectively). In children < 13 yrs, PE for Ht/Scr was tile lowest, while in older children, 1/Scr provided the lowest PE but not significantly different from that for Ht/Scr. The logarithmic transformation tended to predict a slower progression of CRF than actually occurred. Conclusion : Scr, floored for Ht, appears to be a useful model to predict the rate of progression of CRF, particularly in the prepubertal child with congenital renal disease.

  • PDF

Quantification of Temperature Effects on Flowering Date Determination in Niitaka Pear (신고 배의 개화기 결정에 미치는 온도영향의 정량화)

  • Kim, Soo-Ock;Kim, Jin-Hee;Chung, U-Ran;Kim, Seung-Heui;Park, Gun-Hwan;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.2
    • /
    • pp.61-71
    • /
    • 2009
  • Most deciduous trees in temperate zone are dormant during the winter to overcome cold and dry environment. Dormancy of deciduous fruit trees is usually separated into a period of rest by physiological conditions and a period of quiescence by unfavorable environmental conditions. Inconsistent and fewer budburst in pear orchards has been reported recently in South Korea and Japan and the insufficient chilling due to warmer winters is suspected to play a role. An accurate prediction of the flowering time under the climate change scenarios may be critical to the planning of adaptation strategy for the pear industry in the future. However, existing methods for the prediction of budburst depend on the spring temperature, neglecting potential effects of warmer winters on the rest release and subsequent budburst. We adapted a dormancy clock model which uses daily temperature data to calculate the thermal time for simulating winter phenology of deciduous trees and tested the feasibility of this model in predicting budburst and flowering of Niitaka pear, one of the favorite cultivars in Korea. In order to derive the model parameter values suitable for Niitaka, the mean time for the rest release was estimated by observing budburst of field collected twigs in a controlled environment. The thermal time (in chill-days) was calculated and accumulated by a predefined temperature range from fall harvest until the chilling requirement (maximum accumulated chill-days in a negative number) is met. The chilling requirement is then offset by anti-chill days (in positive numbers) until the accumulated chill-days become null, which is assumed to be the budburst date. Calculations were repeated with arbitrary threshold temperatures from $4^{\circ}C$ to $10^{\circ}C$ (at an interval of 0.1), and a set of threshold temperature and chilling requirement was selected when the estimated budburst date coincides with the field observation. A heating requirement (in accumulation of anti-chill days since budburst) for flowering was also determined from an experiment based on historical observations. The dormancy clock model optimized with the selected parameter values was used to predict flowering of Niitaka pear grown in Suwon for the recent 9 years. The predicted dates for full bloom were within the range of the observed dates with 1.9 days of root mean square error.

Predicting the suitable habitat of the Pinus pumila under climate change (기후변화에 의한 눈잣나무의 서식지 분포 예측)

  • Park, Hyun-Chul;Lee, Jung-Hwan;Lee, Gwan-Gyu
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.5
    • /
    • pp.379-392
    • /
    • 2014
  • This study was performed to predict the future climate envelope of Pinus pumila, a subalpine plant and a Climate-sensitive Biological Indicator Species (CBIS) of Korea. P. pumila is distributed at Mt. seorak in South Korea. Suitable habitat were predicted under two alternative RCPscenarios (IPCC AR5). The SDM used for future prediction was a Maxent model, and the total number of environmental variables for Maxent was 8. It was found that the distribution range of P. pumila in the South Korean was $38^{\circ}7^{\prime}8^{{\prime}{\prime}}N{\sim}38^{\circ}7^{\prime}14^{{\prime}{\prime}}N$ and $128^{\circ}28^{\prime}2^{{\prime}{\prime}}E{\sim}128^{\circ}27^{\prime}38^{{\prime}{\prime}}E$ and 1,586m~1,688m in altitude. The variables that contribute the most to define the climate envelope are altitude. Climate envelope simulation accuracy was evaluated using the ROC's AUC. The P. pumila model's 5-cv AUC was found to be 0.99966. which showed that model accuracy was very high. Under both the RCP4.5 and RCP8.5 scenarios, the climate envelope for P. pumila is predicted to decrease in South Korea. According to the results of the maxent model has been applied in the current climate, suitable habitat is $790.78km^2$. The suitable habitats, are distributed in the region of over 1,400m. Further, in comparison with the suitable habitat of applying RCP4.5 and RCP8.5 suitable habitat current, reduction of area RCP8.5 was greater than RCP4.5. Thus, climate change will affect the distribution of P. pumila. Therefore, governmental measures to conserve this species will be necessary. Additionally, for CBIS vulnerability analysis and studies using sampling techniques to monitor areas based on the outcomes of this study, future study designs should incorporate the use of climatic predictions derived from multiple GCMs, especially GCMs that were not the one used in this study. Furthermore, if environmental variables directly relevant to CBIS distribution other than climate variables, such as the Bioclim parameters, are ever identified, more accurate prediction than in this study will be possible.