DOI QR코드

DOI QR Code

Differences in Ability to Predict the Success of Motor Action According to Dance Expertise - Focusing on Pirouette En Dehors

무용 숙련성에 따른 동작결과예측 능력의 차이: 삐루엣 앙 디올 동작을 중심으로

  • Received : 2018.06.18
  • Accepted : 2018.06.18
  • Published : 2018.06.30

Abstract

Dancers' motions are perceived by observers through visual processes with visual information forming the basis for the observers' appreciation and evaluation of the dancers' motions. There have been many discussions as to whether or not observers' personal athletic capabilities form an essential basis for accurate assessment of the motions of others but, so far, no valid conclusions have been reached. The purpose of this study is to investigate how the ability to predict motions of others varies depending on the athletic expertise of the observers. Participants of this research were ballet dancers of varying athletic expertise. Twenty seven participants were divided into three groups with nine in each: beginners, intermediate experts and experts. The participants watched the same dance video and then evaluated whether the motion would be successful or not. The movement related visual information required to evaluate the success of the motion was systematically adjusted by controlling the length of the video. Using the temporal occlusion method, this study measured the response accuracy of the participants by category of expertise. Under the circumstance with insufficient visual information to utilize, the experts showed higher rates of correct response than the intermediate experts and the beginners. The beginners showed higher rates of wrong response than the experts and the intermediate experts. These results showed that the ability to predict success or failure of a dance motion varied depending on motion expertise of the observers, although they had similar level of expertise in perception. Participants considered to have high athletic expertise showed high prediction ability on the result of the motion. In addition, high expertise in perception reduced the likelihood that participants would make hasty responses under the circumstance with insufficient information and helped to reduce wrong response rate. In conclusion, this study showed that motor expertise and perceptual expertise contribute to prediction accuracy of observed motions.

무용수의 움직임은 시각적 처리 과정을 통해 관찰자에게 지각되며, 관찰자는 지각된 시각정보를 바탕으로 무용수의 동작에 대한 평가와 감상을 수행한다. 관찰자의 운동수행능력이 정확한 평가와 감상에 필요한 것인지에 관해 많은 논의가 있으나, 일관된 결론을 내리지 못하고 있다. 이에 본 연구에서는 타인의 동작결과를 예측하는 능력이 관찰자의 운동 숙련성에 따라 어떻게 달라지는지 살펴보고자 하였다. 연구참여자는 총 27명으로 무용 숙련도에 따라 세 집단(숙련자, 중간숙련자, 초보자)으로 각 9명씩 참여하였다. 연구참여자는 컴퓨터 모니터를 통해 제시되는 무용 동영상을 본 후 동작의 성공 여부에 대해 판단하였다. 영상의 길이를 달리 편집하여 동작의 성공 여부를 판단하는데 필요한 정보의 양을 체계적으로 조작하였으며, 시간차단 기법을 사용하여 영상 길이 조건별 연구참여자의 반응 정확도를 측정하였다. 연구결과 판단을 위해 활용할 수 있는 시각적 정보가 충분하지 않은 조건에서 숙련자들은 중간숙련자와 초보자에 비해 더 높은 정답 반응을 나타냈으며 초보자는 숙련자와 중간숙련자에 비해 더 높은 오답 반응을 나타내었다. 이러한 결과는 비슷한 수준의 지각 숙련성을 보유하고 있더라도 동작 숙련성에 따라 무용동작에 대한 결과예측 능력이 차이를 보이며, 높은 운동 숙련성을 가지고 있는 경우 동작결과에 대한 예측 능력이 높다는 것을 보여준다. 또한 높은 지각 숙련성은 주어진 정보가 불충분한 상황에서 성급한 반응을 유보하여 오답률을 낮추는 데 도움을 주는 것으로 생각된다. 결론적으로 본 연구를 통해 동작 숙련성과 지각 숙련성은 관찰된 동작의 결과예측 정확성에 각각 다른 방식으로 기여하고 있음을 알 수 있었다.

Keywords

References

  1. Abernethy, B., & Zawi, K. (2007). Pick-up of essential kinematics underpins expert perception of movement patterns. Journal of Motor Behavior, 39, 353-367. https://doi.org/10.3200/JMBR.39.5.353-368
  2. Aglioti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Nature Neuroscience, 11, 1109-1116. https://doi.org/10.1038/nn.2182
  3. Anderson, J. R., & Bower, G. H. (1973). Human associative memory. Washington, DC: Winston and Sons.
  4. Blakemore, S. J., & Decety, J. (2001). From the perception of action to the understanding of intention. Nature Reviews Neuroscience, 2(1), 561-567.
  5. Calvo-Merino, B., Glaser, D. E., Grezes, J., Passingham, R. E. & Haggard, P. (2005). Action observation and acquired motor skills: an fMRI study with expert dancers. Cerebral Cortex, 15, 1243-1249. https://doi.org/10.1093/cercor/bhi007
  6. Calvo-Merino, B., Grezes, J., Glaser, D. E., Passingham, R. E. & Haggard, P. (2006). Seeing or doing? Influence of visual and motor familiarity in action observation. Current Biology, 16, 1905-1910. https://doi.org/10.1016/j.cub.2006.07.065
  7. Casile, A., & Giese, M. A. (2006). Non-visual motor learning influences the recognition of biological motion. Current Biology, 16(1), 69-74. https://doi.org/10.1016/j.cub.2005.10.071
  8. Catmur, C., Walsh, V. & Heyes, C. (2007). Sensorimotor learning configures the human mirror system. Current Biology, 17, 1527-1531. https://doi.org/10.1016/j.cub.2007.08.006
  9. Cross, E. S., & Ticini, L. F. (2012). Neuroaesthetics and beyond: new horizons in applying the science of the brain to the art of dance. Phenomenology and the Cognitive Sciences, 11(1), 5-16. https://doi.org/10.1007/s11097-010-9190-y
  10. Cross, E. S., Kirsch, L., Ticini, L. F., & Schutz-Bosbach, S. (2011). The impact of aesthetic evaluation and physical ability on dance perception. Frontiers in Human Neuroscience, 5, 1-10. https://doi.org/10.3389/fnhum.2011.00102
  11. Cross, E. S., Kraemer, D. J. M., Hamilton, A. F. D. C., Kelley, W. M., & Grafton, S. T. (2009). Sensitivity of the action observation network to physical and observational learning. Cerebral Cortex, 19(2), 315-326. https://doi.org/10.1093/cercor/bhn083
  12. Cross, E. S., Hamilton, A. F. & Grafton, S. T. (2006). Building a motor simulation de novo: observation of dance by dancers. Neuroimage, 31, 1257-1267. https://doi.org/10.1016/j.neuroimage.2006.01.033
  13. Gallese, V,. Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119, 593-609. https://doi.org/10.1093/brain/119.2.593
  14. Gallese, V., & Metzinger, T. (2003). Motor ontology: The representational reality of goals, actions, and selves. Philosophical Psychology, 13(3), 365-388.
  15. Giese, M. A. & Poggio, T. (2003). Neural mechanisms for the recognition of biological movements. Nature Reviews Neuroscience, 4, 179-192. https://doi.org/10.1038/nrn1057
  16. Gomila, A., & Calvo, P. (2008). Directions for an embodied cognitive science: towards an integrated approach. In P. Calvo & A. Gomila (Eds.), Handbook of cognitive science: An embodied approach(pp. 1-25). Amsterdam: Elsevier.
  17. Gray, J. T., Neisser, U., Shapiro, B. A. & Kouns, S. (1991). Observational learning of ballet sequences: the role of kinematic information. Ecological Psychology, 3, 121-134. https://doi.org/10.1207/s15326969eco0302_4
  18. Grush, R. (2004). The emulation theory if representation: Motor control, imagery, and perception. Behavioral and Brain Sciences, 27, 377-442. https://doi.org/10.1017/S0140525X04000093
  19. Hecht, H., Vogt, S., & Prinz, W. (2001). Motor learning enhances perceptual judgment: A case for action-perception transfer. Psychological Research, 65, 3-14. https://doi.org/10.1007/s004260000043
  20. Henrik Ehrsson, H., Geyer, S., & Naito, E. (2003). Imagery of voluntary movement of fingers, toes, and tongue activates corresponding body-part-specific motor representations. Journal of Neurophysiology, 90(5), 3304-3316. https://doi.org/10.1152/jn.01113.2002
  21. Jeannerod, M. (2001). Neural simulation of action: A unifying mechanism for motor cognition. NeuroImage, 14, S103-S109. https://doi.org/10.1006/nimg.2001.0832
  22. Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception & Psychophysics, 14, 201-211. https://doi.org/10.3758/BF03212378
  23. Kladzie, R. L. (1975). Human memory: Structures and processes. San Francisco: W. H. Freeman & Co.
  24. Knoblich, G., & Flach, R. (2001). Predicting the effects of actions: Interactions of perception and action. Psychological Science, 12, 467-472. https://doi.org/10.1111/1467-9280.00387
  25. Knoblich, G., Seigerschmidt, E., Flach, R., & Prinz, W. (2002). Authorship effects in the prediction of handwriting strokes. Quarterly Journal of Experimental Psychology, 55A, 1027-1046.
  26. Marr, D. (1982). Vision. San Francisco: W. H. Freeman.
  27. Newell, A., Shaw, J. C., & Simon, H. A. (1958). Elements of a theory of human problem solving. Psychological Review, 23, 342-343.
  28. Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9, 129-154. https://doi.org/10.1080/713752551
  29. Repp, B. H., & Knoblich, G. (2007). Action can affect auditory perception. Psychological Science, 18, 6-7. https://doi.org/10.1111/j.1467-9280.2007.01839.x
  30. Repp, B. H., & Knoblich, G. (2009). Performed or observed keyboard actions affect pianists' judgements of relative pitch. Quarterly Journal of Experimental Psychology, 62, 2156-2170. https://doi.org/10.1080/17470210902745009
  31. Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169-192. https://doi.org/10.1146/annurev.neuro.27.070203.144230
  32. Starkes, J., & Allard, F. (1993). Cognitive issues in motor expertise (Vol. 102): Elsevier.
  33. Van der Wel, R.., Sebanz, N., & Knoblich, G. (2012). Action Perception from a Common Coding Perspective. In K. Johnson & M. Shiffrar (Eds.), People Watching: Social, Perceptual, and Neurophysiological Studies of Body Perception (pp. 103-120). New York: Oxford University Press.
  34. Wilson, M., & Knoblich, G. (2005). The case for motor involvement in perceiving conspecifics. Psychological Bulletin, 131, 460-473. https://doi.org/10.1037/0033-2909.131.3.460
  35. Wolpert, D. M., Doya, K., & Kawato, M. (2003). A unifying computational framework for motor control and social interaction. Philosophical Transactions of the Royal Society, 358, 593-602. https://doi.org/10.1098/rstb.2002.1238