• Title/Summary/Keyword: accuracy-study

Search Result 16,314, Processing Time 0.049 seconds

Evaluating Accuracy according to the Evaluator and Equipment Using Electronic Apex Locators

  • Yu, Beom-Young;Son, Keunbada;Lee, Kyu-Bok
    • Journal of Korean Dental Science
    • /
    • v.13 no.2
    • /
    • pp.52-58
    • /
    • 2020
  • Purpose: Using two types of electronic apex locators, this study aimed to investigate the differences in accuracy according to the evaluator and equipment. Materials and Methods: Artificial teeth of the lower first premolars and two mandibular acrylic models (A and B) were used in this study. In the artificial teeth, the pulp chamber was opened and the access cavity was prepared. Using calibrated digital Vernier calipers, the distance from the top of the cavity and the root apex was measured to assess the actual distance between two artificial teeth. The evaluation was conducted by 20 dentists, and each evaluator repeated measurements for each electronic apex locator five times. The difference between the actual distance from the top of the cavity to the root apex and the distance measured using electronic measuring equipment was compared. For statistical analysis, the Friedman test the Mann-Whitney U-test were conducted and the differences between groups were analyzed (α=0.05). Result: As for the accuracy of measurement according to the two types of electronic apex locators, the value of the measurement error was 0.4753 mm in Dentaport ZX and 0.3321 mm in E-Cube Plus. Moreover, electronic apex locators Dentaport ZX and E-Cube Plus showed statistically significant differences (P<0.05). As for the difference in the accuracy of the two types of electronic apex locators according to the evaluator, the resulting values differed depending on the evaluator and showed a statistically significant difference (P<0.001). Conclusion: Electronic apex locator E-Cube Plus showed higher accuracy than did Dentaport ZX. Nevertheless, both types of electronic apex locators showed 100% accuracy in finding the region within root apex ±0.5 mm zone. Furthermore, according to the evaluator, the two electronic apex locators showed different resulting values.

A Study on Inspecting Position Accuracy of DACS Pintle (위치자세제어장치의 핀틀 위치정확도 점검 방안 연구)

  • Tak, Jun Mo
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.3
    • /
    • pp.57-64
    • /
    • 2021
  • In the study, to minimize the error on guided control of the KV (Kill Vehicle) and to secure the hit-to-kill performance, a position accuracy inspection for the DACS (Divert and Attitude Control System) actuation system was proposed. The accuracy performance of the DACS actuation system is one of the most important factors in the interception of ballistic missiles. In order to validate actuation control accuracy of DACS system, an inspection item was set for position accuracy, and the inspection system was designed for DACS pintle. To measure the absolute position value of the DACS pintle, an external measurement system was developed using laser displacement sensors. The inspection system was designed so that it can be compared with the actuation command in real time. The proposed position accuracy inspection system can be inspected not only in a DACS system but also in missile system level. The position accuracy inspection was performed using the designed inspection system, and analysis of the inspection result.

Studying the Ephemeris Effect on Position Accuracy Based on Criteria Applied to Baseline Lengths by New MATLAB Program (NMP)

  • Shimaa Farouk;Mahmoud El-Nokrashy;Ahmed Abd-Elhay;Nasr Saba
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.3
    • /
    • pp.113-122
    • /
    • 2023
  • Although the Relative Global Navigation Satellite System (GNSS) positioning technique provides high accuracy, it has several drawbacks. The scarcity of control points, the long baselines, and using of ultra-rabid and rabid products increased position errors. This study has designed a New MATLAB Program that helps users automatically select suitable IGS stations related to the baseline lengths and the azimuth between GNSS points and IGS stations. This study presented criteria for the length of the baselines used in Egypt and an advanced estimated accuracy before starting the project. The experimental test studies the performance of the position accuracy related to the relation between three factors: observation session, final, rabid, and ultrarabid products, and the baseline lengths. Ground control point mediates Egypt was selected as a test point. Nine surrounding IGS stations were selected as reference stations, and the coordinates of the tested point were calculated based on them. Baselines between the tested point and the IGS stations were classified regarding proposal criteria. The coordinates of the tested point were obtained in different observation sessions (0.5, 1, 2, 4, 5, 6, 7, 7.5 h). The results indicated that the lengths of the baseline in Egypt were classified short (less than 600 km), medium (600-1,200 km), and long (greater than 1,200 km) and required a minimum observation time of 4, 5, and 7 h to obtain accuracy 10, 19, 48 mm sequentially. The position accuracy was superior for the rapid and the final than the ultra-rapid products by 16%. A short baseline was at the best case; there was a performance in position accuracy with a 57% deduction in observation time compared with the long baseline.

Improving the Accuracy of 3D Object-space Data Extracted from IKONOS Satellite Images - By Improving the Accuracy of the RPC Model (IKONOS 영상으로부터 추출되는 3차원 지형자료의 정확도 향상에 관한 연구 - RPC 모델의 위치정확도 보정을 통하여)

  • 이재빈;곽태석;김용일
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.4
    • /
    • pp.301-308
    • /
    • 2003
  • This study describes the methodology that improves the accuracy of the 3D object-space data extracted from IKONOS satellite images by improving the accuracy of a RPC(Rational Polynomial Coefficient) model. For this purpose, we developed the algorithm to adjust a RPC model, and could improve the accuracy of a RPC model with this algorithm and geographically well-distributed GCPs(Ground Control Points). Furthermore, when a RPC model was adjusted with this algorithm, the effects of geographic distribution and the number of GCPs on the accuracy of the adjusted RPC model was tested. The results showed that the accuracy of the adjusted RPC model is affected more by the distribution of GCPs than by the number of GCPs. On the basis of this result, the algorithm using pseudo_GCPs was developed to improve the accuracy of a RPC model in case the distribution of GCPs was poor and the number of GCPs was not enough to adjust the RPC model. So, even if poorly distributed GCPs were used, the geographically adjusted RPC model could be obtained by using pseudo_GCPs. The less the pseudo_GCPs were used -that is, GCPs were more weighted than pseudo_GCPs in the observation matrix-, the more accurate the adjusted RPC model could be obtained, Finally, to test the validity of these algorithms developed in this study, we extracted 3D object-space coordinates using RPC models adjusted with these algorithms and a stereo pair of IKONOS satellite images, and tested the accuracy of these. The results showed that 3D object-space coordinates extracted from the adjusted RPC models was more accurate than those extracted from original RPC models. This result proves the effectiveness of the algorithms developed in this study.

Low-Cost IoT Sensors for Flow Measurement in Open Channels: A Comparative Study of Laboratory and Field Performance

  • Khatatbeh, Arwa;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.172-172
    • /
    • 2023
  • The use of low-cost IoT sensors for flow measurement in open channels has gained significant attention due to their potential to provide continuous and real-time data at a low cost. However, the accuracy and reliability of these sensors in real-world scenarios are not well understood. This study aims to compare the performance of low-cost IoT sensors in the laboratory and real-world conditions to evaluate their accuracy and reliability. Firstly, a low-cost IoT sensor was integrated with an IoT platform to acquire real-time flow rate data. The IoT sensors were calibrated in the laboratory environment to optimize their accuracy, including different types of low-cost IoT sensors (HC-SR04 ultrasonic sensor & YF-S201 sensor) using an open channel prototype. After calibration, the IoT sensors were then applied to a real-world case study in the Dorim-cheon stream, where they were compared to traditional flow measurement methods to evaluate their accuracy.The results showed that the low-cost IoT sensors provided accurate and reliable flow rate data under laboratory conditions, with an error range of less than 5%. However, when applied to the real-world case study, the accuracy of the IoT sensors decreased, which could be attributed to several factors such as the effects of water turbulence, sensor drift, and environmental factors. Overall, this study highlights the potential of low-cost IoT sensors for flow measurement in open channels and provides insights into their limitations and challenges in real-world scenarios.

  • PDF

Class Separability according to the different Type of Satellite Images (위성영상 종류에 따른 분리도 특성)

  • Son, Kyeong-Sook;Choi, Hyun;Kim, Si-Nyun;Kang, In-Joon
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.245-250
    • /
    • 2004
  • The classification of the satellite images is basic part in Remote sensing. In classification of the satellite images, class separability feature is very effective accuracy of the images classified. For improving classification accuracy, It is necessary to study classification methode than analysis of class separability feature deciding classification probability. In this study, IKONOS, SPOT 5, Landsat TM, were resampled to sizes 1m grid. Above images were calculated the class separability prior to the step for classification of pixels. The results of the study were valued necessary process in geometric information building. This study help to improve accuracy of classification as feature of class separability in the class through optimizing previous classification steps.

  • PDF

NASA Model Deviation Correction for Accuracy Improvement of Land Surface Temperature Extraction in Broad Region (NASA 모델의 편차보정에 의한 광역지역의 지표온도산출 정확도 향상)

  • Um Dae-Yong;Park Joon-Kyu;Kim Min-Kyu;Kang Joon-Mook
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.281-286
    • /
    • 2006
  • In this study, acquired time series Landsat TM/ETM+ image to extract land surface temperature for wide-area region and executed geometric correction and radiometric correction. And extracted land surface temperature using NASA Model, and I achieved the first correction by perform land coverage category for study region and applies characteristic emission rate. Land surface temperature that acquire by the first correction analyzed correlation with Meteorological Administration's temperature data by regression analysis, and established correction formula. And I wished to improve accuracy of land surface temperature extraction using satellite image by second correcting deviations between two datas using establishing correction formula. As a result, land surface temperature that acquire by 1,2th correction could correct in mean deviation of about ${\pm}3.0^{\circ}C$ with Meteorological Administration data. Also, could acquire land surface temperature about study region by relative high accuracy by applying to other Landsat image for re-verification of study result.

  • PDF

Study on the Korean Accuracy Standards Setting of Digital Map for the Construction and Utilization of Precise Geospatial Information (정밀공간정보의 구축 및 활용을 위한 수치지도의 정확도 기준설정 연구)

  • Park, Hong Gi
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.493-502
    • /
    • 2013
  • For various geospatial information such as planimetric and topographic features, the required accuracy may be defined depending on the purpose of GIS applications. Also, the accuracy of the geospatial information have a major impact on the quality of the raw surveying data. In order to be usefully applied the precise geospatial information, the accuracy standards must be appropriately set so that the digital map as base map can be accurately made. Before computer mapping and GIS technology existed, paper maps were drawn by hand. So, the map scale was a significant contributor to the map accuracy. As such the past, the accuracy of maps is determined the scale at which the map would be drawn, but recent trends are to treat accuracy as a one of quality elements, rather than a specification for producing the map. Therefore, the purpose of this paper is to set the new korean map accuracy standards appropriate for the construction and application of the precise geospatial information on behalf of the current representation of korean digital maps.

Positional Accuracy of Road and Underground Utility Information (도로기반시설물정보의 위치정확도에 관한 연구)

  • Park, Hong-Gi;Shin, Dong-Bin
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.4 s.22
    • /
    • pp.51-60
    • /
    • 2002
  • As the use of GIS becomes more widespread, the quality and source of data is becoming more of a concern among users. But accuracy is a component of quality, and the positional accuracy is a component of total accuracy. If only we consider the positional accuracy, simultaneously collecting technology of location and attribute information, whether it be manually, using conventional surveying method, GPS, or remote sensing, is a practical way of insuring that location and attribute information are correctly correlated. This study analyse the positional accuracy from a view-point of user and supplier, which is the considerations that can ensure quality level and continuously maintain the road and underground utility information. The positional accuracy of road and underground utility information are considered as two categories - expected accuracy of data collection procedure, required accuracy of data usage process. And the project manager must consider the cost/benefit view of data generation in order to determine the surveying method.

  • PDF

Study on Selection of Optimized Segmentation Parameters and Analysis of Classification Accuracy for Object-oriented Classification (객체 기반 영상 분류에서 최적 가중치 선정과 정확도 분석 연구)

  • Lee, Jung-Bin;Eo, Yang-Dam;Heo, Joon
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.6
    • /
    • pp.521-528
    • /
    • 2007
  • The overall objective of this research was to investigate various combination of segmentation parameters and to improve classification accuracy of object-oriented classification. This research presents a method for evaluation of segmentation parameters by calculating Moran's I and Intrasegment Variance. This research used Landsat-7/ETM image of $11{\times}14$ Km developed area in Ansung, Korea. Segmented images are generated by 75 combinations of parameter. Selecting 7 combinations of high, middle and low grade expected classification accuracy was based on calculated Moran's I and Intrasegment Variance. Selected segmentation images are classified 4 classes and analyzed classification accuracy according to method of objected-oriented classification. The research result proved that classification accuracy is related to segmentation parameters. The case of high grade of expected classification accuracy showed more than 85% overall accuracy. On the other hand, low ado showed around 50% overall accuracy.