• Title/Summary/Keyword: accumulated nitrogen

Search Result 187, Processing Time 0.029 seconds

Studies on the Accumulation of Nitrite and Niarite in Vegetables and Fruits (채소(菜蔬) 및 과실중(果實中) 질산염(窒酸鹽)과 아질산염(亞窒酸鹽)의 축적(蓄積)에 관(關)한 연구(硏究))

  • Shin, Kwang-Soon;Namkung, Sok
    • Journal of Nutrition and Health
    • /
    • v.10 no.4
    • /
    • pp.111-115
    • /
    • 1977
  • Vegetables and fruits purchased from several markets in Seoul from July to October in 1977 were analyzed to know the level of nitrate-and nitrite-nitrogen accumulation in relation to a public health. Radishes and chinese cabbages utilized mainly as pickled vegetables in Korea resulted in the highest concentration of nitrate-nitrogen. Some of the levels for radishes and chinese cabbages were notably high and exceeded a recommended upper limit of 300 ppm $No_{3}-N$, and thus these levels would render these samples unsafe for use. The levels in some of vegetables other than radish and chinese cabbage, e.g., spinach, lettuce, green onion, cabbage were relatively high and considered to be unsafe for use in feeding infants, where as those of green pepper, bean sprouts and parsely were very low and safe. And also the levells in fruits were very low and safe. Nitrite-nitrogen contents in all tested vegetables and fruits ranged to trace and appeared not to be accumulated in fresh vegetables and fruits. Stems and roots of radishes and chinese cabbages accumulated approximately 2 fold more nitrate-nitrogen than leaves in 5 samples of each vegetable tested.

  • PDF

Evaluation of biodegradability according to bait type for crab pots (꽃게 통발용 미끼의 형태에 대한 생분해도 평가)

  • Jeong, Byung-Gon;Chang, Ho-Young;Koo, Jae-Geun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.44 no.1
    • /
    • pp.20-30
    • /
    • 2008
  • In order to evaluate the biodegradability of bait used in the pot for swimming crab, water tank experiments were conducted. Mackerel is the most commonly used natural form of bait to catch the swimming crabs, and therefore was used in this experiment for the biodegradability according to the manufacturing process of the bait. From the biodegradability test on chemical oxygen demand(COD), total nitrogen(T - N), total phosphorus(T - P), ammoniac nitrogen, nitrite nitrogen and nitrate nitrogen per unit weight of the bait based on the production rate and the accumulated amount of pollutants, it was concluded that the smaller the size of the mackerel pieces, the higher the production rate and accumulated amount of organic matter and nutrients which was unfavorable to water pollution. The amount of pollutants released from the intestine of the tuna was similar with that from the whole mackerel. For the operation period of 111 days, the accumulated concentrations of tested pollutants from the tuna which were 67.3 mgCOD/g d, 86.4 mgT N/g d, 3.1 mgT - P/g d, were almost half comparing with those from the mackerel which were 65.7 - 94.4 mgCOD/g d, 83.8 - 109.4 mgT - N/g d, 3.1 - 5.2 mgT - P/g d. The amount of pollutants released from the intestine of the tuna was slightly less than that from the mackerel that was cut into 8 pieces. but more than that from the mackerel which was not cut into pieces. Therefore, it can be concluded that the key factor in determining water pollution potential is not the kind of bait, but the processing or preparation method used.

The Effect of Temperature and Radiation on Grain Weight and Grain Nitrogen Content in Rice (등숙기 기온 및 일사량이 벼 종실중 및 종실질소함량에 미치는 영향)

  • Lee, Chung-Kuen;Kim, Deok-Su;Kwon, Young-Up;Lee, Jae-Eun;Seo, Jong-Ho;Lee, Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.1
    • /
    • pp.36-44
    • /
    • 2009
  • This experiment was conduced to clarify the effects of growth temperature and radiation on grain weight increase and grain nitrogen accumulation in rice. Final grain weight became heavy and grain-filling duration shortened with radiation increase during grain-filling period (GFP). In addition, grain nitrogen accumulated duration during GFP was influenced strongly, but final grain nitrogen content was influenced slightly by accumulated radiation (AR). Accumulated effective temperature (AET) described well variation of grain weight (GW) and grain nitrogen content (GN), but GW and GN showed large variation under different radiation during GFP, when related with AET or AR, indicating that there was a limiting in describing variation of GW and GN by any single factor between AET and AR. However, AET multiplied by AR could describe relatively well the variations of GW and GN regardless of radiation during GFP.

Nutrient Balance and Application Efficiency of Nitrogen and Potassium in Salt-Accumulated Greenhouse Soil (염류(鹽類)가 축적(蓄積)된 시설재배(施設栽培) 토양(土壤)에서 질소(窒素)와 가리(加里)의 시비효과(施肥效果) 및 양분수지(養分收支))

  • Lee, Sang-Eun;Lee, Choon-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.2
    • /
    • pp.78-84
    • /
    • 1994
  • Yield response of tomato to nitrogen and potassium fertilizer and the balance of the two elements were determined in salt-accumulated greenhouse soil to improve the efficiency of fertilizer appiication. The response of tomato yield to nitrogen and potassium fertilizer application was not significant. The current parameters such as OM and $K/{\sqrt{Ca+Mg}}$ that were used to determine the level of nitrogen and potassium fertilizer in open field were not suitable in salt-accumulated greenhouse soil condition. The temporal and spatial distribution of $NO_3{^-}-N$showed the same pattern to those of $Cl^-$ ion that is non-reactive with soil, while the content of Ex. K was extraordinarily high in soil after harvesting of tomato, which had experienced relatively dry condition during harvesting time. The loss of $NO_3{^-}-N$ and Ex. K out of 28cm below the soil surface was 2~5 and 1.5~3.5 times greater than the amount of nitrogen and potassium uptake by the plant.

  • PDF

Effect of ammonium nitrogen in anaerobic biofilter using live-stock-wastewater (축산폐수의 혐기성 고정법에 있어서 암모니아성 질소의 영향)

  • Eom, Tae-Kyu;Lim, Jung-Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.4
    • /
    • pp.43-53
    • /
    • 1997
  • In this research, the synthetic livestock wastewater was prepared to study the characteristics of organic matter removal, the change of VFA production, and the amount of gas production with respect to the change of ammonium nitrogen concentration in the waste using anaerobic fixed bed process, which is an anaerobic biofilm process. The HRT and operation temperature were 1 day and $35{\pm}1^{\circ}C$, respectively. Also, the characteristics of organic matter removal and the inhibitory effect on microorganism in the anaerobic process were studied on the organic loading and ammonium nitrogen concentration. The results obtained were as follows: For COD loading of $10kg/m^3$-day and five levels of ammonium nitrogen concentration ranging from 1,000 to 5,000 mg/L, organic removal efficiencies were about 81, 74, 67, 58, and 51%, and gas productions were 3,860, 3,520, 3,240, 3,020, and 2,790 ml/l-day, respectively. Average methane contents in the gas produced on COD loading of $10kg/m^3$-day was about 76%. Throughout the whole period of experiment, remaining VFA (as COD base) in the effluent was over 90% of remaining COD. This result indicated the inhibitory effect of high concentration of ammonium nitrogen through the facts that accumulated VFA was almost COD and organic removal efficiency decreased also with the increase of ammonium nitrogen. Especially, that implys which high concentration of ammonium nitrogen not only inhibits methane forming bacteria, but also acid forming bacteria.

  • PDF

CrABCA2 Facilitates Triacylglycerol Accumulation in Chlamydomonas reinhardtii under Nitrogen Starvation

  • Jang, Sunghoon;Kong, Fantao;Lee, Jihyeon;Choi, Bae Young;Wang, Pengfei;Gao, Peng;Yamano, Takashi;Fukuzawa, Hideya;Kang, Byung-Ho;Lee, Youngsook
    • Molecules and Cells
    • /
    • v.43 no.1
    • /
    • pp.48-57
    • /
    • 2020
  • The microalga Chlamydomonas reinhardtii accumulates triacylglycerols (TAGs) in lipid droplets under stress conditions, such as nitrogen starvation. TAG biosynthesis occurs mainly at the endoplasmic reticulum (ER) and requires fatty acid (FA) substrates supplied from chloroplasts. How FAs are transferred from chloroplast to ER in microalgae was unknown. We previously reported that an Arabidopsis thaliana ATP-binding cassette (ABC) transporter, AtABCA9, facilitates FA transport at the ER during seed development. Here we identified a gene homologous to AtABCA9 in the C. reinhardtii genome, which we named CrABCA2. Under nitrogen deprivation conditions, CrABCA2 expression was upregulated, and the CrABCA2 protein level also increased. CrABCA2 knockdown lines accumulated less TAGs and CrABCA2 overexpression lines accumulated more TAGs than their untransformed parental lines. Transmission electron microscopy showed that CrABCA2 was localized in swollen ER. These results suggest that CrABCA2 transports substrates for TAG biosynthesis to the ER during nitrogen starvation. Our study provides a potential tool for increasing lipid production in microalgae.

Identification and characterization of Dunaliella salina OH214 strain newly isolated from a saltpan in Korea

  • Minjae, Kim;Hyeon Jun, Oh;Khanh, Nguyen;EonSeon, Jin
    • ALGAE
    • /
    • v.37 no.4
    • /
    • pp.317-329
    • /
    • 2022
  • Carotenoids are effective antioxidants that are found in various photosynthetic organisms. Marine microalgae are an advantageous bioresource for carotenoid production because they do not compete with other crops for freshwater and arable land. This study reports a newly isolated Dunaliella strain from the Geumhong Saltpan on Yeongjong Island, West Sea, Korea. The new strain was isolated and classified as Dunaliella salina through phylogenetic analysis and was named the OH214 strain (Deposit ID: KCTC14434BP). The newly isolated strain can survive in a wide range of NaCl concentrations (0.3-5.0 M NaCl), but grows well in 0.6 to 1.5 M NaCl culture medium. Under high-light conditions (500 ± 10 μmol photons m-2 s-1), the cells accumulated three times more β-carotene than under low-light conditions (50 ± 5 μmol photons m-2 s-1). The cells accumulated 2.5-fold more β-carotene under nitrogen-deficient (1 mM KNO3) conditions (3.24 ± 0.36 ㎍ 106 cells-1) than in nitrogen-sufficient conditions (>5 mM KNO3). The lutein content under nitrogen-deficient conditions (1.73 ± 0.09 ㎍ 106 cells-1) was more than 24% higher than that under nitrogen-sufficient conditions. Under the optimized culture condition for carotenoid induction using natural seawater, D. salina OH214 strain produced 7.97 ± 0.09 mg g DCW-1 of β-carotene and 4.65 ± 0.18 mg g DCW-1 of lutein, respectively. We propose that this new microalga is a promising strain for the simultaneous production of β-carotene and lutein.

Nutrients and Decomposition Rate Accumulated on Soil Layers in Quercus mongolica Forest of Mt. Songnisan National Park (속리산 신갈나무림의 토양층별 영양염류 함량과 분해율)

  • 강상준;한동열
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.1
    • /
    • pp.93-100
    • /
    • 2004
  • The content of nutrients such as organic carbon, nitrogen, phosphorus and potassium accumulated on soil layers in Quercus mongolica forest of Mt. Songnisan National Park located at central part of Korea was measured, and then the decomposition constants and decay times of the nutrients were also calculated by the negative coefficience model(O1son,1963). The quantities of organic carton of L-layer, F-layer, H-layer and $A_1$-layer of the forest stand were 231.25 g $m^{-2}$, 291.50 g $m^{-2}$,166.91 g$m^{-2}$ and 174.51 g $m^{-2}$, respectively. The content of organic carbon and nitrogen contained in L-layer and F-layer showed large quantity than those of other layers. The large amount of phosphorus and potassium was observed at the B-layer and $A_1$-layer. On the other hand, the decomposition constants(k) of soil organic matter were as follows : organic carbon (k = 0.3657), nitrogen (k = 0.3319), phosphorus (k = 0.2050), and potassium (k = 0.0934) and the decay times needed to 99% decomposition of nutrients in soil organic matter were as follows: that is, organic carton, nitrogen, phosphorus and potassium was 13.94 years, 15.18 years, 24.79 years, and 55.11 years, respectively. By the application of Turbo Pascal Program on the inflowed and outflowed nutrients to the forest stand,87.67% (714.84 g $m^{-2}$) of organic carbon inflowed was decomposed and 81.62% (1,594.62 g $m^{-2}$) of organic carbon accumulated was decomposed. And 84.98% of nitrogen inflowed was decomposed and 70.26% of nitrogen accumulated was also decayed.50.00% of phosphorus input and 40.31% of potassium input were decomposed, and 38.40% of phosphoyus and 33.03% of potassium accumulated were also decayed, respectively. Therefore, it is suggested that Quercus mongolica forest surveyed in the present study is maintaining in steady state because input and output amounts of nutrients is shown a similar pattern.

Accumuation Pattern of Nitrate-Nitrogen in Sorghum And Maize Plants as Affected by Morphological Characteristics And Environmental Temperature (Sorghum 및 옥수수의 형태적 특성과 재배온도가 Nitrate-Nitrogen 축적에 미치는 영향)

  • 김정갑
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.7 no.3
    • /
    • pp.146-152
    • /
    • 1987
  • Sorghum cv. Pioneer 93 1, sorghum-sudangrass hybrid cv. Sioux and maize plant cv. Blizzard were assayed for toxic concentrations of nitrate-nitrogen ($NO_3$-N) and their relationship to morphological characteristics and environmental temperature in a field and phytotron trial. In the phytotron, sorghum and maize plants ranging from emergence to heading stage, were grown under different day/night temperatures of 30125, 25/20,28/18 and 1818 degree C. Nitrate-nitrogen in sorghum and maize plants was accumulated mainly in stems. Therefore nitrate concentration in the young plants was increased as development of stalks advanced and was highest at the stage of 3-4 leaves, when the plants had a leaf weight ratio 0.78-0.80 g/g plant weight. However, nitrate concentrations of the plant decreased as morphological development progressed, especially from the stage of growing point differentiation. Correlation coefficients showed a positive correlation of nitrate concentration with leaf weight ratio, leaf area ratio and specific leaf area, while plant height, dry matter percentage and absolute growth rate showed a negative association with TEX>$NO_3$-N ($P{\le}0.1$%). Cyanogenic glycosides, total nitrogen and crude protein were close associated with nitrate accumulation, and positively significant ($P{\le}0.1$%). High temperature over 30/25^{\circ}C.$ for 3 weeks increased N-uptake and dry matter accumulation, but reduced nitrate concentration. Under cold temperature below 18/8^{\circ}C.$ concentration of nitrate-N was increased in spite of its limited nitrogen uptake and plant growth.

  • PDF