DOI QR코드

DOI QR Code

CrABCA2 Facilitates Triacylglycerol Accumulation in Chlamydomonas reinhardtii under Nitrogen Starvation

  • Jang, Sunghoon (Department of Life Sciences, Pohang University of Science and Technology) ;
  • Kong, Fantao (School of Bioengineering, Dalian University of Technology) ;
  • Lee, Jihyeon (Integrative Biosciences and Biotechnology, Pohang University of Science and Technology) ;
  • Choi, Bae Young (Integrative Biosciences and Biotechnology, Pohang University of Science and Technology) ;
  • Wang, Pengfei (Cellular and Molecular Biology Program, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong) ;
  • Gao, Peng (Cellular and Molecular Biology Program, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong) ;
  • Yamano, Takashi (Graduate School of Biostudies, Kyoto University) ;
  • Fukuzawa, Hideya (Graduate School of Biostudies, Kyoto University) ;
  • Kang, Byung-Ho (Cellular and Molecular Biology Program, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong) ;
  • Lee, Youngsook (Integrative Biosciences and Biotechnology, Pohang University of Science and Technology)
  • Received : 2019.11.07
  • Accepted : 2019.12.02
  • Published : 2020.01.31

Abstract

The microalga Chlamydomonas reinhardtii accumulates triacylglycerols (TAGs) in lipid droplets under stress conditions, such as nitrogen starvation. TAG biosynthesis occurs mainly at the endoplasmic reticulum (ER) and requires fatty acid (FA) substrates supplied from chloroplasts. How FAs are transferred from chloroplast to ER in microalgae was unknown. We previously reported that an Arabidopsis thaliana ATP-binding cassette (ABC) transporter, AtABCA9, facilitates FA transport at the ER during seed development. Here we identified a gene homologous to AtABCA9 in the C. reinhardtii genome, which we named CrABCA2. Under nitrogen deprivation conditions, CrABCA2 expression was upregulated, and the CrABCA2 protein level also increased. CrABCA2 knockdown lines accumulated less TAGs and CrABCA2 overexpression lines accumulated more TAGs than their untransformed parental lines. Transmission electron microscopy showed that CrABCA2 was localized in swollen ER. These results suggest that CrABCA2 transports substrates for TAG biosynthesis to the ER during nitrogen starvation. Our study provides a potential tool for increasing lipid production in microalgae.

Keywords

References

  1. Aksoy, M., Pootakham, W., Pollock, S.V., Moseley, J.L., Gonzalez-Ballester, D., and Grossman, A.R. (2013). Tiered regulation of sulfur deprivation responses in Chlamydomonas reinhardtii and identification of an associated regulatory factor. Plant Physiol. 162, 195-211. https://doi.org/10.1104/pp.113.214593
  2. Beer, L.L., Boyd, E.S., Peters, J.W., and Posewitz, M.C. (2009). Engineering algae for biohydrogen and biofuel production. Curr. Opin. Biotechnol. 20, 264-271. https://doi.org/10.1016/j.copbio.2009.06.002
  3. Blaby, I.K., Glaesener, A.G., Mettler, T., Fitz-Gibbon, S.T., Gallaher, S.D., Liu, B., Boyle, N.R., Kropat, J., Stitt, M., Johnson, S., et al. (2013). Systems-level analysis of nitrogen starvation-induced modifications of carbon metabolism in a Chlamydomonas reinhardtii starchless mutant. Plant Cell 25, 4305-4323. https://doi.org/10.1105/tpc.113.117580
  4. Boyle, N.R., Page, M.D., Liu, B., Blaby, I.K., Casero, D., Kropat, J., Cokus, S.J., Hong-Hermesdorf, A., Shaw, J., Karpowicz, S.J., et al. (2012). Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas. J. Biol. Chem. 287, 15811-15825. https://doi.org/10.1074/jbc.M111.334052
  5. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  6. Brown, E.P., Normandin, E., Osei-Owusu, N.Y., Mahan, A.E., Chan, Y.N., Lai, J.I., Vaccari, M., Rao, M., Franchini, G., Alter, G., et al. (2015). Microscale purification of antigen-specific antibodies. J. Immunol. Methods 425, 27-36. https://doi.org/10.1016/j.jim.2015.06.005
  7. Chavez-Valdez, R., Flock, D.L., Martin, L.J., and Northington, F.J. (2016). Endoplasmic reticulum pathology and stress response in neurons precede programmed necrosis after neonatal hypoxia-ischemia. Int. J. Dev. Neurosci. 48, 58-70. https://doi.org/10.1016/j.ijdevneu.2015.11.007
  8. Chen, J.E. and Smith, A.G. (2012). A look at diacylglycerol acyltransferases (DGATs) in algae. J. Biotechnol. 162, 28-39. https://doi.org/10.1016/j.jbiotec.2012.05.009
  9. Dean, M., Hamon, Y., and Chimini, G. (2001). The human ATP-binding cassette (ABC) transporter superfamily. J. Lipid Res. 42, 1007-1017. https://doi.org/10.1016/S0022-2275(20)31588-1
  10. Gargouri, M., Park, J.J., Holguin, F.O., Kim, M.J., Wang, H., Deshpande, R.R., Shachar-Hill, Y., Hicks, L.M., and Gang, D.R. (2015). Identification of regulatory network hubs that control lipid metabolism in Chlamydomonas reinhardtii. J. Exp. Bot. 66, 4551-4566. https://doi.org/10.1093/jxb/erv217
  11. Georgianna, D.R. and Mayfield, S.P. (2012). Exploiting diversity and synthetic biology for the production of algal biofuels. Nature 488, 329-335. https://doi.org/10.1038/nature11479
  12. Gonzalez-Ballester, D., Pootakham, W., Mus, F., Yang, W., Catalanotti, C., Magneschi, L., de Montaigu, A., Higuera, J.J., Prior, M., Galvan, A., et al. (2011). Reverse genetics in Chlamydomonas: a platform for isolating insertional mutants. Plant Methods 7, 24. https://doi.org/10.1186/1746-4811-7-24
  13. Goodson, C., Roth, R., Wang, Z.T., and Goodenough, U. (2011). Structural correlates of cytoplasmic and chloroplast lipid body synthesis in Chlamydomonas reinhardtii and stimulation of lipid body production with acetate boost. Eukaryot. Cell 10, 1592-1606. https://doi.org/10.1128/EC.05242-11
  14. Harris, E.H. (1989). The Chlamydomonas Sourcebook (California: Academic Press).
  15. Harris, E.H. (2001). Chlamydomonas as a model organism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 363-406. https://doi.org/10.1146/annurev.arplant.52.1.363
  16. Higgins, B.T. and VanderGheynst, J.S. (2014). Effects of escherichia coli on mixotrophic growth of Chlorella minutissima and production of biofuel precursors. PLoS One 9, e96807. https://doi.org/10.1371/journal.pone.0096807
  17. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., and Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54, 621-639. https://doi.org/10.1111/j.1365-313X.2008.03492.x
  18. Hwang, J.-U., Song, W.-Y., Hong, D., Ko, D., Yamaoka, Y., Jang, S., Yim, S., Lee, E., Khare, D., and Kim, K. (2016). Plant ABC transporters enable many unique aspects of a terrestrial plant's lifestyle. Mol. Plant 9, 338-355. https://doi.org/10.1016/j.molp.2016.02.003
  19. Ibanez-Salazar, A., Rosales-Mendoza, S., Rocha-Uribe, A., Ramirez-Alonso, J.I., Lara-Hernandez, I., Hernandez-Torres, A., Paz-Maldonado, L.M.T., Silva-Ramirez, A.S., Banuelos-Hernandez, B., and Martinez-Salgado, J.L. (2014). Over-expression of Dof-type transcription factor increases lipid production in Chlamydomonas reinhardtii. J. Biotechnol. 184, 27-38. https://doi.org/10.1016/j.jbiotec.2014.05.003
  20. Jang, S., Yamaoka, Y., Ko, D.h., Kurita, T., Kim, K., Song, W.Y., Hwang, J.U., Kang, B.H., Nishida, I., and Lee, Y. (2015). Characterization of a Chlamydomonas reinhardtii mutant defective in a maltose transporter. J. Plant Biol. 58, 344-351. https://doi.org/10.1007/s12374-015-0377-1
  21. Jones, D.T., Taylor, W.R., and Thornton, J.M. (1992). The rapid generation of mutation data matrices from protein sequences. Bioinformatics 8, 275-282. https://doi.org/10.1093/bioinformatics/8.3.275
  22. Kang, B.H. (2010). Electron microscopy and high-pressure freezing of Arabidopsis. In Methods in Cell Biology, J. Spence, ed. (Amsterdam, The Netherlands: Elsevier), pp. 259-283.
  23. Katoh, K. and Standley, D.M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772-780. https://doi.org/10.1093/molbev/mst010
  24. Kim, S., Yamaoka, Y., Ono, H., Kim, H., Shim, D., Maeshima, M., Martinoia, E., Cahoon, E.B., Nishida, I., and Lee, Y. (2013). AtABCA9 transporter supplies fatty acids for lipid synthesis to the endoplasmic reticulum. Proc. Natl. Acad. Sci. U. S. A. 110, 773-778. https://doi.org/10.1073/pnas.1214159110
  25. Kim, Y., Terng, E.L., Riekhof, W.R., Cahoon, E.B., and Cerutti, H. (2018). Endoplasmic reticulum acyltransferase with prokaryotic substrate preference contributes to triacylglycerol assembly in Chlamydomonas. Proc. Natl. Acad. Sci. U. S. A. 115, 1652-1657. https://doi.org/10.1073/pnas.1715922115
  26. Kong, F., Burlacot, A., Liang, Y., Legeret, B., Alseekh, S., Brotman, Y., Fernie, A.R., Krieger-Liszkay, A., Beisson, F., Peltier, G., et al. (2018). Interorganelle communication: peroxisomal malate Dehydrogenase2 connects lipid catabolism to photosynthesis through redox coupling in Chlamydomonas. Plant Cell 30, 1824-1847. https://doi.org/10.1105/tpc.18.00361
  27. Kong, F., Liang, Y., Legeret, B., Beyly-Adriano, A., Blangy, S., Haslam, R.P., Napier, J.A., Beisson, F., Peltier, G., and Li-Beisson, Y. (2017). Chlamydomonas carries out fatty acid $\beta$-oxidation in ancestral peroxisomes using a bona fide acyl‐CoA oxidase. Plant J. 90, 358-371. https://doi.org/10.1111/tpj.13498
  28. Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870-1874. https://doi.org/10.1093/molbev/msw054
  29. Lee, J.H., Lin, H., Joo, S., and Goodenough, U. (2008). Early sexual origins of homeoprotein heterodimerization and evolution of the plant KNOX/BELL family. Cell 133, 829-840. https://doi.org/10.1016/j.cell.2008.04.028
  30. Li, N., Gugel, I.L., Giavalisco, P., Zeisler, V., Schreiber, L., Soll, J., and Philippar, K. (2015). FAX1, a novel membrane protein mediating plastid fatty acid export. PLoS Biol. 13, e1002053. https://doi.org/10.1371/journal.pbio.1002053
  31. Li, N., Zhang, Y., Meng, H., Li, S., Wang, S., Xiao, Z., Chang, P., Zhang, X., Li, Q., Guo, L., et al. (2019). Characterization of fatty acid exporters involved in fatty acid transport for oil accumulation in the green alga Chlamydomonas reinhardtii. Biotechnol. Biofuels 12, 14. https://doi.org/10.1186/s13068-018-1332-4
  32. Li, R., Yu, K., and Hildebrand, D.F. (2010). DGAT1, DGAT2 and PDAT expression in seeds and other tissues of epoxy and hydroxy fatty acid accumulating plants. Lipids 45, 145-157. https://doi.org/10.1007/s11745-010-3385-4
  33. Li, X., Zhang, R., Patena, W., Gang, S.S., Blum, S.R., Ivanova, N., Yue, R., Robertson, J.M., Lefebvre, P.A., Fitz-Gibbon, S.T., et al. (2016). An indexed, mapped mutant library enables reverse genetics studies of biological processes in Chlamydomonas reinhardtii. Plant Cell 28, 367-387. https://doi.org/10.1105/tpc.15.00465
  34. Liu, J., Lee, Y.Y., Mao, X., and Li, Y. (2017). A simple and reproducible non-radiolabeled in vitro assay for recombinant acyltransferases involved in triacylglycerol biosynthesis. J. Appl. Phycol. 29, 323-333. https://doi.org/10.1007/s10811-016-0949-6
  35. Merchant, S.S., Prochnik, S.E., Vallon, O., Harris, E.H., Karpowicz, S.J., Witman, G.B., Terry, A., Salamov, A., Fritz-Laylin, L.K., Marechal-Drouard, L., et al. (2007). The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318, 245-250. https://doi.org/10.1126/science.1143609
  36. Neupert, J., Karcher, D., and Bock, R. (2009). Generation of Chlamydomonas strains that efficiently express nuclear transgenes. Plant J. 57, 1140-1150. https://doi.org/10.1111/j.1365-313X.2008.03746.x
  37. Ngan, C.Y., Wong, C.H., Choi, C., Yoshinaga, Y., Louie, K., Jia, J., Chen, C., Bowen, B., Cheng, H., and Leonelli, L. (2015). Lineage-specific chromatin signatures reveal a regulator of lipid metabolism in microalgae. Nat. Plants 1, 15107. https://doi.org/10.1038/nplants.2015.107
  38. Nguyen, H.M., Baudet, M., Cuine, S., Adriano, J.M., Barthe, D., Billon, E., Bruley, C., Beisson, F., Peltier, G., Ferro, M., et al. (2011). Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: with focus on proteins involved in lipid metabolism. Proteomics 11, 4266-4273. https://doi.org/10.1002/pmic.201100114
  39. Nguyen, H.M., Cuine, S., Beyly-Adriano, A., Legeret, B., Billon, E., Auroy, P., Beisson, F., Peltier, G., and Li-Beisson, Y. (2013). The green microalga Chlamydomonas reinhardtii has a single omega-3 fatty acid desaturase that localizes to the chloroplast and impacts both plastidic and extraplastidic membrane lipids. Plant Physiol. 163, 914-928. https://doi.org/10.1104/pp.113.223941
  40. Piehler, A., Kaminski, W.E., Wenzel, J.J., Langmann, T., and Schmitz, G. (2002). Molecular structure of a novel cholesterol-responsive A subclass ABC transporter, ABCA9. Biochem. Biophys. Res. Commun. 295, 408-416. https://doi.org/10.1016/S0006-291X(02)00659-9
  41. Pineau, L., Colas, J., Dupont, S., Beney, L., Fleurat-Lessard, P., Berjeaud, J.M., Berges, T., and Ferreira, T. (2009). Lipid-induced ER stress: synergistic effects of sterols and saturated fatty acids. Traffic 10, 673-690. https://doi.org/10.1111/j.1600-0854.2009.00903.x
  42. Pohl, A., Devaux, P.F., and Herrmann, A. (2005). Function of prokaryotic and eukaryotic ABC proteins in lipid transport. Biochim. Biophys. Acta 1733, 29-52. https://doi.org/10.1016/j.bbalip.2004.12.007
  43. Radakovits, R., Jinkerson, R.E., Darzins, A., and Posewitz, M.C. (2010). Genetic engineering of algae for enhanced biofuel production. Eukaryot. Cell 9, 486-501. https://doi.org/10.1128/EC.00364-09
  44. Roth, C.W., Holm, I., Graille, M., Dehoux, P., Rzhetsky, A., Wincker, P., Weissenbach, J., and Brey, P.T. (2003). Identification of the Anopheles gambiae ATP-binding cassette transporter superfamily genes. Mol. Cells 15, 150-158.
  45. Salas-Montantes, C.J., Gonzalez-Ortega, O., Ochoa-Alfaro, A.E., Camarena-Rangel, R., Paz-Maldonado, L.M.T., Rosales-Mendoza, S., Rocha-Uribe, A., and Soria-Guerra, R.E. (2018). Lipid accumulation during nitrogen and sulfur starvation in Chlamydomonas reinhardtii overexpressing a transcription factor. J. Appl. Phycol. 1-13.
  46. Schmollinger, S., Muhlhaus, T., Boyle, N.R., Blaby, I.K., Casero, D., Mettler, T., Moseley, J.L., Kropat, J., Sommer, F., Strenkert, D., et al. (2014). Nitrogen-sparing mechanisms in Chlamydomonas affect the transcriptome, the proteome, and photosynthetic metabolism. Plant Cell 26, 1410-1435. https://doi.org/10.1105/tpc.113.122523
  47. Scott, S.A., Davey, M.P., Dennis, J.S., Horst, I., Howe, C.J., Lea-Smith, D.J., and Smith, A.G. (2010). Biodiesel from algae: challenges and prospects. Curr. Opin. Biotechnol. 21, 277-286. https://doi.org/10.1016/j.copbio.2010.03.005
  48. Shockey, J.M., Gidda, S.K., Chapital, D.C., Kuan, J.C., Dhanoa, P.K., Bland, J.M., Rothstein, S.J., Mullen, R.T., and Dyer, J.M. (2006). Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum. Plant Cell 18, 2294-2313. https://doi.org/10.1105/tpc.106.043695
  49. Stephens, E., Ross, I.L., King, Z., Mussgnug, J.H., Kruse, O., Posten, C., Borowitzka, M.A., and Hankamer, B. (2010). An economic and technical evaluation of microalgal biofuels. Nat. Biotechnol. 28, 126-128. https://doi.org/10.1038/nbt0210-126
  50. Stevens, D.R., Purton, S., and Rochaix, J.D. (1996). The bacterial phleomycin resistance geneble as a dominant selectable marker in Chlamydomonas. Mol. Gen. Genet. 251, 23-30.
  51. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729. https://doi.org/10.1093/molbev/mst197
  52. Tarling, E.J., de Aguiar Vallim, T.Q., and Edwards, P.A. (2013). Role of ABC transporters in lipid transport and human disease. Trends Endocrinol. Metab. 24, 342-350. https://doi.org/10.1016/j.tem.2013.01.006
  53. Torri, C., Samori, C., Adamiano, A., Fabbri, D., Faraloni, C., and Torzillo, G. (2011). Preliminary investigation on the production of fuels and bio-char from Chlamydomonas reinhardtii biomass residue after bio-hydrogen production. Bioresour. Technol. 102, 8707-8713. https://doi.org/10.1016/j.biortech.2011.01.064
  54. Tsai, C.H., Warakanont, J., Takeuchi, T., Sears, B.B., Moellering, E.R., and Benning, C. (2014). The protein compromised hydrolysis of triacylglycerols 7 (CHT7) acts as a repressor of cellular quiescence in Chlamydomonas. Proc. Natl. Acad. Sci. U. S. A. 111, 15833-15838. https://doi.org/10.1073/pnas.1414567111
  55. Tsai, C.H., Zienkiewicz, K., Amstutz, C.L., Brink, B.G., Warakanont, J., Roston, R., and Benning, C. (2015). Dynamics of protein and polar lipid recruitment during lipid droplet assembly in Chlamydomonas reinhardtii. Plant J. 83, 650-660. https://doi.org/10.1111/tpj.12917
  56. Wang, P., Chen, X., Goldbeck, C., Chung, E., and Kang, B.H. (2017). A distinct class of vesicles derived from the trans-Golgi mediates secretion of xylogalacturonan in the root border cell. Plant J. 92, 596-610. https://doi.org/10.1111/tpj.13704
  57. Wang, Z.T., Ullrich, N., Joo, S., Waffenschmidt, S., and Goodenough, U. (2009). Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot. Cell 8, 1856-1868. https://doi.org/10.1128/EC.00272-09
  58. Wase, N., Tu, B., Black, P.N., and DiRusso, C.C. (2015). Phenotypic screening identifies Brefeldin A/Ascotoxin as an inducer of lipid storage in the algae Chlamydomonas reinhardtii. Algal Res. 11, 74-84. https://doi.org/10.1016/j.algal.2015.06.002
  59. Wijffels, R.H. and Barbosa, M.J. (2010). An outlook on microalgal biofuels. Science 329, 796-799. https://doi.org/10.1126/science.1189003
  60. Yamano, T., Sato, E., Iguchi, H., Fukuda, Y., and Fukuzawa, H. (2015). Characterization of cooperative bicarbonate uptake into chloroplast stroma in the green alga Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. U. S. A. 112, 7315-7320. https://doi.org/10.1073/pnas.1501659112
  61. Yamaoka, Y., Achard, D., Jang, S., Legeret, B., Kamisuki, S., Ko, D., Schulz-Raffelt, M., Kim, Y., Song, W.Y., and Nishida, I. (2016). Identification of a Chlamydomonas plastidial 2-lysophosphatidic acid acyltransferase and its use to engineer microalgae with increased oil content. Plant Biotechnol. J. 14, 2158-2167. https://doi.org/10.1111/pbi.12572
  62. Yamaoka, Y., Shin, S., Choi, B.Y., Kim, H., Jang, S., Kajikawa, M., Yamano, T., Kong, F., Legeret, B., Fukuzawa, H., et al. (2019). The bZIP1 Transcription factor regulates lipid remodeling and contributes to ER stress management in Chlamydomonas reinhardtii. Plant Cell 31, 1127-1140. https://doi.org/10.1105/tpc.18.00723

Cited by

  1. MicroRNA Expression Profile Analysis of Chlamydomonas reinhardtii during Lipid Accumulation Process under Nitrogen Deprivation Stresses vol.9, pp.1, 2022, https://doi.org/10.3390/bioengineering9010006