• Title/Summary/Keyword: abutment screw

Search Result 236, Processing Time 0.027 seconds

Three dimensional stress analysis of implant-supported prosthesis with various misfit (적합도가 다른 임플랜트 지지 보철물의 삼차원적 응력 분석)

  • Yang, Hong-So;Chung, Hyun-Ju;Park, Yeong-Joon;Park, Sang-Won;Kunavisarut, Chatchai
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.17 no.4
    • /
    • pp.307-314
    • /
    • 2001
  • To evaluate the effect of misfit in two implant-supported fixed partial dentures in the posterior of the mandible, variations of the standard finite element models were made by changing the location of the gap as follows: 1) no gap present; 2) located between the gold cylinder and the abutment on the distal implant; 3) gap located between the gold cylinder and the abutment on the mesial implant. The results of this study were as follows: 1. When the location of the gap was close to the load applied on the prosthesis, the stress in the prosthesis, implant components and surrounding bone increased. 2. The presence of cantilever increased the stress in the prosthesis, implant and surrounding bone significantly, regardless of the presence of the gap. 3. When there was a gap between the prosthesis and abutment, the stress in the bone around the implant increased. 4. When passive fit was achieved, the stress was distributed widely in each component with less peak stress in each component. 5. The inner structures of the implant components, the gold screw and the abutment screw bear more stress when the prosthesis did not exhibit passive fit with the abutments than when passive fit was present.

  • PDF

Standardizing the evaluation criteria on treatment outcomes of mandibular implant overdentures: a systematic review

  • Kim, Ha-Young;Shin, Sang-Wan;Lee, Jeong-Yol
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.5
    • /
    • pp.325-332
    • /
    • 2014
  • PURPOSE. The aim of this review was to analyze the evaluation criteria on mandibular implant overdentures through a systematic review and suggest standardized evaluation criteria. MATERIALS AND METHODS. A systematic literature search was conducted by PubMed search strategy and hand-searching of relevant journals from included studies considering inclusion and exclusion criteria. Randomized clinical trials (RCT) and clinical trial studies comparing attachment systems on mandibular implant overdentures until December, 2011 were selected. Twenty nine studies were finally selected and the data about evaluation methods were collected. RESULTS. Evaluation criteria could be classified into 4 groups (implant survival, peri-implant tissue evaluation, prosthetic evaluation, and patient satisfaction). Among 29 studies, 21 studies presented implant survival rate, while any studies reporting implant failure did not present cumulative implant survival rate. Seventeen studies evaluating peri-implant tissue status presented following items as evaluation criteria; marginal bone level (14), plaque Index (13), probing depth (8), bleeding index (8), attachment gingiva level (8), gingival index (6), amount of keratinized gingiva (1). Eighteen studies evaluating prosthetic maintenance and complication also presented following items as evaluation criteria; loose matrix (17), female detachment (15), denture fracture (15), denture relining (14), abutment fracture (14), abutment screw loosening (11), and occlusal adjustment (9). Atypical questionnaire (9), Visual analog scales (VAS) (4), and Oral Health Impact Profile (OHIP) (1) were used as the format of criteria to evaluate patients satisfaction in 14 studies. CONCLUSION. For evaluation of implant overdenture, it is necessary to include cumulative survival rate for implant evaluation. It is suggested that peri-implant tissue evaluation criteria include marginal bone level, plaque index, bleeding index, probing depth, and attached gingiva level. It is also suggested that prosthetic evaluation criteria include loose matrix, female detachment, denture fracture, denture relining, abutment fracture, abutment screw loosening, and occlusal adjustment. Finally standardized criteria like OHIP-EDENT or VAS are required for patient satisfaction.

THE ASSESSMENT OF ABUTMENT SCREW STABILITY BETWEEN THE EXTERNAL AND INTERNAL HEXAGONAL JOINT UNDER CYCLIC LOADING

  • Lee, Tae-Sik;Han, Jung-Suk;Yang, Jae-Ho;Lee, Jae-Bong;Kim, Sung-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.6
    • /
    • pp.561-568
    • /
    • 2008
  • STATEMENT OF PROBLEM: Currently, many implant systems are developed and divided into two types according to their joint connection: external or internal connection. Regardless of the connection type, screw loosening is the biggest problem in implant-supported restoration. PURPOSE: The purpose of this study is to assess the difference in stability of abutment screws between the external and internal hexagonal connection types under cyclic loading. MATERIAL AND METHODS: Each of the 15 samples of external implants and internal abutments were tightened to 30 N/cm with a digital torque gauge, and cemented with a hemispherical metal cap. Each unit was then mounted in a $30^{\circ}$ inclined jig. Then each group was divided into 2 sub-groups based on different periods of cyclic loading with the loading machine (30 N/ cm - 300 N/cm,14 Hz: first group $1{\times}10^6$, $5{\times}10^6$ cyclic loading; second group $3{\times}10^6$, $3{\times}10^6$ for a total cyclic loading of $6{\times}10^6$) The removal torque value of the screw before and after cyclic loading was checked. SPSS statistical software for Windows was used for statistical analysis. Group means were calculated and compared by ANOVA, independent t-test, and paired t-test with ${\alpha}$=0.05. RESULTS: In the external hexagonal connection, the difference between the removal torque value of the abutment screw before loading, the value after $1{\tims}10^6$ cyclic loading, and the value after $1{\times}10^6$, and additional $5{\times}10^6$ cyclic loading was not significant. The difference between the removal torque value after $3{\times}10^6$ cyclic loading and after $3{\times}10^6$, and additional $3{\times}10^6$ cyclic loading was not significant. In the internal hexagonal connection, the difference between the removal torque value before loading and the value after $1{\times}10^6$ cyclic loading was not significant, but the value after $1{\times}10^6$, and additional $5{\times}10^6$ cyclic loading was reduced and the difference was significant (P < .05). In addition, in the internal hexagonal connection, the difference between the removal torque value after $3{\times}10^6$ cyclic loading and the value after $3{\times}10^6$, and additional $3{\times}10^6$ cyclic loading was not significant. CONCLUSION: The external hexagonal connection was more stable than the internal hexagonal connection after $1{\times}10^6$, and additional $5{\times}10^6$ cyclic loading (t = 10.834, P < .001). There was no significant difference between the two systems after $3{\times}10^6$, and additional $3{\times}10^6$ cycles.

Evaluation of reverse torque value of abutment screws on CAD/CAM custom-made implant abutments (CAD/CAM을 이용한 맞춤형 임플란트 지대주의 나사 풀림 토크 평가)

  • Lee, Chang-Jae;Yang, Sung-Eun;Kim, Seok-Gyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.2
    • /
    • pp.128-134
    • /
    • 2012
  • Purpose: The purpose of this study was to compare the screw joint stability between the CADCAM custom-made implant abutment and the prefabricated implant abutment by measuring the reverse torque value after cyclic loading. Materials and methods: Twelve screw type implants (Implantium, Dentium Co., Seoul, Korea) were embedded in aluminum cylinder with acrylic resin. The implant specimens were equally divided into 3 groups, and connected to the prefabricated titanium abutments (Implantium, Dentium Co., Seoul, Korea), CADCAM custom-made titanium abutments (Myplant, Raphabio Co., Seoul, Korea) and CADCAM custom-made zirconia abutments (Zirconia Myplant, Raphabio Co., Seoul, Korea). The CAD-CAM milled titanium crown (Raphabio Co., Seoul, Korea) was cemented on each implant abutment by resin cement. Before cyclic loading, each abutment screw was tightened to 30 Ncm and the reverse torque value was measured about 30 minutes later. After the crown specimen was subjected to the sinusoidal cyclic loading (30 to 120 N, 500,000 cycles, 2 Hz), postloading reverse torque value was measured and the reverse torque loss ratio was calculated. Kruskal-Wallis test was used for statistical analysis of the reverse torque loss ratio. Results: The CADCAM custom-made titanium abutments presented higher values in reverse torque loss ratio without statistically significant differences than the prefabricated titanium abutments ($P$>.05). Reverse torque loss ratio of the custom-made zirconia abutments was significantly higher compared to that of the prefabricated titanium abutments ($P$=.014). Conclusion: Within the limitation of the present $in-vitro$ study, it was concluded that there was no significant difference in screw joint stability between the CADCAM custom-made titanium abutments and the prefabricated titanium abutments. On the other hand, the CADCAM custom-made zirconia abutments showed lower screw joint stability than prefabricated titanium abutments.

THE EFFECT OF PREPARATION PROCEDURE ON IMPLANT-ABUTMENT JOINT STABILITY (임플랜트 지대주의 삭제과정이 결합부 안정성에 미치는 영향)

  • Lee Jang-Wook;Kim Chang-Whe;Jang Kyung-Soo;Lim Young-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.5
    • /
    • pp.662-670
    • /
    • 2005
  • Statement of problem: Little is known about the effect of abutment preparation procedure on do-torque values in different implant platform and the relationship of final do-torque values with different implant platform size. Purpose: This study evaluated the effect of abutment preparation procedure on do-torque values in different implant platform and the relationship of final do-torque values with different implant platform size. Material and method: Six ITI implants (2 narrow-neck implants, 2 regular-neck implants, 2 wide-neck implants) and six Branemark implants (2 narrow platforms, 2 regular platforms, 2 wide platforms) were embedded in each acrylic resin block with epoxy resin. Eighteen $synOcta^(R)$ abutments (6 narrow-neck implant-abutments, 6 regular-neck implant-abutments, 6 wide-neck implant-abutments) and eighteen esthetic abutments (6 narrow platform-abutments, 6 regular platform-abutments, 6 wide platform-abutments) were tightened to each implant with digital torque gauge. Initial do-torque values were measured using digital torque gauge. After preparation of abutments, Final do-torque values were measured with digital torque gauge. Results and conclusion: 1. Screws loosening or abutments motion were not detected in all experimental group, but some scratches of implant-abutment joints were detected in all group 2. Reduction ratios of final do-torque values were greater than initial do-torque values in all measured group, except in narrow-neck implant-abutment group (p<0.05). 3. Reduction ratios of final do-torque values in wide-neck implant-abutment group were greater than regular-neck implant-abutment group (p<0.01). 4. The greatest standard deviation value was detected in wide platform group in both implant systems.

PHOTOELASTIC STRESS ANALYSIS OF LOAD TRANSFER TO SATELLITE ABUTMENT AS AN IMMEDIATE ABUTMENT (인공치아의 즉시부하를 위해 새로이 개발된 인공치아 지대주(Satellite Abutment)의 광탄성 응력 분석)

  • Park, Sang-Kyu;Lee, Baek-Soo;Engelke, W;Kim, Boo-Dong
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.6
    • /
    • pp.472-479
    • /
    • 2002
  • Since $Br^{\circ}anemark$ introduced the osseointegrated implants, they have been granted for useful methods for the restoration of oral function. The original $Br^{\circ}anemark$ protocol recommended long stress-free healing periods to achieve the osseointegration of dental implants. However, many clinical and experimental studies have shown that the osseointegration is no wonder in almost cases and that early and immediate loading may lead to predictable osseointegration. So we are willing to introduce the Satellite Abutment newly invented for immediate loading. We think that it will make the occlusal forces dispersed to surrounding bone and that we can restore the oral function immediately after implant installation not disturbing osseointegration. In case of using Satellite abutment, stress concentrated to bone contact area of implant was distributed not only fixation plate and screws but also superior, middle portion of implant and cortical layer of jaw bone. It was clearly decreased on the bone contact surfaces around dental implants. 1. Stress was decreased more than 76.5% when satellite straight abutment was used. 2. Stress was decreased more than 50% when satellite angled abutment was used. 3. The stress around dental implant was well distributed along the cortical bone surface and the fixation plate and screw. This study concludes that satellite abutment can be used as all immediate loading implant prothesis because it was possible to distribute periimplant occlusal stress through implant contact bone surface and cortical layer of jaw bone.

Long-term effect of implant-abutment connection type on marginal bone loss and survival of dental implants

  • Young-Min Kim;Jong-Bin Lee;Heung-Sik Um;Beom-Seok Chang;Jae-Kwan Lee
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.6
    • /
    • pp.496-508
    • /
    • 2022
  • Purpose: This study aimed to compare the long-term survival rate and peri-implant marginal bone loss between different types of dental implant-abutment connections. Methods: Implants with external or internal abutment connections, which were fitted at Gangneung-Wonju National University Dental Hospital from November 2011 to December 2015 and followed up for >5 years, were retrospectively investigated. Cumulative survival rates were evaluated for >5 years, and peri-implant marginal bone loss was evaluated at 1- and 5-year follow-up examinations after functional loading. Results: The 8-year cumulative survival rates were 93.3% and 90.7% in the external and internal connection types, respectively (P=0.353). The mean values of marginal bone loss were 1.23 mm (external) and 0.72 mm (internal) (P<0.001) after 1 year of loading, and 1.20 mm and 1.00 mm for external and internal abutment connections, respectively (P=0.137) after 5 years. Implant length (longer, P=0.018), smoking status (heavy, P=0.001), and prosthetic type (bridge, P=0.004) were associated with significantly greater marginal bone loss, and the use of screw-cement-retained prosthesis was significantly associated (P=0.027) with less marginal bone loss. Conclusions: There was no significant difference in the cumulative survival rate between implants with external and internal abutment connections. After 1 year of loading, marginal bone loss was greater around the implants with an external abutment connection. However, no significant difference between the external and internal connection groups was found after 5 years. Both types of abutment connections are viable treatment options for the reconstruction of partially edentulous ridges.

EFFECT OF A COUNTER-TORQUE DEVICE AND THE INTERNAL HEXAGON OF ABUTMENT ON THE TIGHTENING TORQUE TRANSMITTED TO THE IMPLANT (회전방지장치와 지대주의 내육각구조가 임플란트로 전달되는 조임 회전력에 미치는 영향)

  • Lee Sang-Min;Jeon Young-Chan;Jeong Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.2
    • /
    • pp.223-231
    • /
    • 2003
  • Statement of problem : Little is known about the effect of a counter-torque device and the internal hexagon of abutment on the tightening torque transmitted to the implant. Purpose : The purpose of this study was to examine the effect of a counter-torque device and the internal hexagon of abutment on the tightening torque transmitted to the implant. Material and Methods : In this study, three types of abutment were used, (1) two-piece conical abutment with hexagon, (2) two-piece conical abutment without hexagon, and (3) one-piece conical abutment without hexagon. The experimental groups were divided into five groups according to the type of abutment and the usage of a counter-torque device. Group I : two-piece conical abutment with internal hexagon was tightened without the use of a counter-torque device. Group II : two-piece conical abutment without internal hexagon was tightened without the use of a counter-torque device. Group III : one-piece conical abutment without internal hexagon was tightened without the use of a counter-torque device. Group IV : two-piece conical abutment with internal hexagon was tightened with the use of a counter-torque device Group V : two-piece conical abutment without internal hexagon was tightened with the use of a counter-torque device. Abutments were tightened 20Ncm torque with the use of manual torque wrench and then torque values were measured by torque-gauge. After the measurement of torque values, all groups were loosened with the use of manual torque wrench and then detorque values were measured by torque-gauge. Results : The results were as follows. 1. There were no differences in torque values among three types of abutment. 2. Regardless of the existence of the internal hexagon of abutment, a counter-torque device decreased the tightening torque transmitted to the implant about 92% 3. In group III showed the highest detorque value, however there were no differences among group I, II, IV and V. Conclusion : Within the limitations of this study, it was concluded that the internal hexagon of abutment has no effect on the tightening torque transmitted to the implant and the detorque value of abutment screw. The use of a counter-torque device is essential to prevent microfracture on the implant-bone interface but has no effect on preload.

Surface Changes between Implant and Zircoina Abutment after Loading (하중 후 임프란트와 지르코니아 지대주 사이의 표면 변화)

  • Kim, Moon-Soo;Cho, Young-Bum;Kim, Hee-Jung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.2
    • /
    • pp.185-195
    • /
    • 2011
  • In this study, titanium abutments and zirconia abutments were connected to each implant in external type implants. After that they were loaded 10000 times with 20Kg as occlusal force. The surface changes of external hexgon part and platform were observed in FESEM image. Viker's hardness of an implant, a titanium abutment and a zirconia abutment were measured respectively. 1. Viker's hardness of an implants, a titanium abutment and a zirconia abutment was $309.80{\pm}11.78$ HV, $318.40{\pm}11.82$ HV, and $1495.30{\pm}16.21$ HV respectively. There was no statistical significance between an implant and a titanium abutment (P>0.05, Anova). However, there was statistical significance between an implant and a zirconia abutment(P<0.05, Anova). 2. The wear was observed at the joint of implant and abutment in both a titanium abutment group and a zirconia abutment group after loading 10,000 times. The zirconia abutment showed more remarkable wear than the titanium one. In conclusion, the wear of external hexagon and platform was much more notable in a zirconia abutment group than a titanium one. It was suggested that it could result from the difference of surface hardness between titanium and zirconia. The wear of junction between an implant and a zirconia abutment becomes more severe, the connection of an implant and an abutment is much more unfit. This is likely to cause loosening and fracture of the abutment screw. so it is considered that the possibility of implant supra-structure failure can be increased.

Biomechanical stress and microgap analysis of bone-level and tissue-level implant abutment structure according to the five different directions of occlusal loads

  • Kim, Jae-Hoon;Noh, Gunwoo;Hong, Seoung-Jin;Lee, Hyeonjong
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.5
    • /
    • pp.316-321
    • /
    • 2020
  • PURPOSE. The stress distribution and microgap formation on an implant abutment structure was evaluated to determine the relationship between the direction of the load and the stress value. MATERIALS AND METHODS. Two types of three-dimensional models for the mandibular first molar were designed: bone-level implant and tissue-level implant. Each group consisted of an implant, surrounding bone, abutment, screw, and crown. Static finite element analysis was simulated through 200 N of occlusal load and preload at five different load directions: 0, 15, 30, 45, and 60°. The von Mises stress of the abutment and implant was evaluated. Microgap formation on the implant-abutment interface was also analyzed. RESULTS. The stress values in the implant were as follows: 525, 322, 561, 778, and 1150 MPa in a bone level implant, and 254, 182, 259, 364, and 436 MPa in a tissue level implant at a load direction of 0, 15, 30, 45, and 60°, respectively. For microgap formation between the implant and abutment interface, three to seven-micron gaps were observed in the bone level implant under a load at 45 and 60°. In contrast, a three-micron gap was observed in the tissue level implant under a load at only 60°. CONCLUSION. The mean stress of bone-level implant showed 2.2 times higher than that of tissue-level implant. When considering the loading point of occlusal surface and the direction of load, higher stress was noted when the vector was from the center of rotation in the implant prostheses.