• Title/Summary/Keyword: absolute positioning

Search Result 120, Processing Time 0.03 seconds

Autonomous Real-time Relative Navigation for Formation Flying Satellites

  • Shim, Sun-Hwa;Park, Sang-Young;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.1
    • /
    • pp.59-74
    • /
    • 2009
  • Relative navigation system is presented using GPS measurements from a single-channel global positioning system (GPS) simulator. The objective of this study is to provide the real-time inter-satellite relative positions as well as absolute positions for two formation flying satellites in low earth orbit. To improve the navigation performance, the absolute states are estimated using ion-free GRAPHIC (group and phase ionospheric correction) pseudo-ranges and the relative states are determined using double differential carrier-phase data and singled-differential C/A code data based on the extended Kalman filter and the unscented Kalman filter. Furthermore, pseudo-relative dynamic model and modified relative measurement model are developed. This modified EKF method prevents non-linearity of the measurement model from degrading precision by applying linearization about absolute navigation solutions not about the priori estimates. The LAMBDA method also has been used to improve the relative navigation performance by fixing ambiguities to integers for precise relative navigation. The software-based simulation has been performed and the steady state accuracies of 1 m and 6 mm ($1{\sigma}$ of 3-dimensional difference errors) are achieved for the absolute and relative navigation using EKF for a short baseline leader/follower formation. In addition, the navigation performances are compared for the EKF and the UKF for 10 hours simulation, and relative position errors are mm-level for the two filters showing the similar trends.

A Precise Relative Positioning Method Based on Time-Differenced Carrier Phase Measurements from Low-Cost GNSS Receiver (저비용 GNSS 수신기를 이용한 반송파 위상 시각간 차분 측정치 기반의 정밀 상대위치 결정 기법)

  • Park, Kwi-Woo;Lee, DongSun;Park, Chansik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1846-1855
    • /
    • 2015
  • In this paper, a precise relative positioning with TD(time differenced) carrier phase measurements from a low-cost GNSS(Global Navigation Satellite System) receiver is proposed and analysed. The proposed method is using carrier phase measurement from a single GNSS receiver that reference receiver is not required and stand alone positioning is possible. TD operation removes the troublesome integer ambiguity resolution problem, and if the time interval is short, other error, such as, ionospheric, tropospheric delay and ephemeris error are effectively eliminated. The error analysis of the proposed method shows that a precise and positioning with carrier phase is possible. The implemented system is evaluated using a real car experiments. The results show that the horizontal positioning error was less than 3m during 10 minutes experiments, which is 4 times more precise than the results of normal code based absolute positioning.

Potential Accuracy of GNSS PPP- and PPK-derived Heights for Ellipsoidally Referenced Hydrographic Surveys: Experimental Assessment and Results

  • Yun, Seonghyeon;Lee, Hungkyu;Choi, Yunsoo;Ham, Geonwoo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.4
    • /
    • pp.211-221
    • /
    • 2017
  • Ellipsodially referenced survey (ERS) is considered as one of the challenging issues in the hydrographic surveys due to the fact that the bathymetric data collected by this technique can be readily transformed either to the geodetic or the chart datum by application of some geoscientific models. Global Navigation Satellite Systems (GNSS) is a preferred technique to determine the ellipsoidal height of a vessel reference point (RP) because it provides cost-effective and unprecedentedly accurate positioning solutions. Especially, the GNSS-derived heights include heave and dynamic draft of a vessel, so as for the reduced bathymetric solutions to be potentially free from these corrections. Although over the last few decades, differential GNSS (DGNSS) has been widely adopted in the bathymetric surveys, it only provides limited accuracy of the vertical component. This technical barrier can be effectively overcome by adopting the so-called GNSS carrier phase (CPH) based techniques, enhancing accuracy of the height solution up to few centimeters. From the positioning algorithm standpoint, the CPH-based techniques are categorized under absolute and relative positioning in post-processing mode; the former is precise point positioning (PPP) correcting errors by the global or regional models, the latter is post-processed kinematic positioning (PPK) that uses the differencing technique to common error sources between two receivers. This study has focused on assessment of achievable accuracy of the ellipsoidal heights obtained from these CPH-based techniques with a view to their applications to hydrographic surveys where project area is, especially, few tens to hundreds kilometers away from the shore. Some field trials have been designed and performed so as to collect GNSS observables on static and kinematic mode. In this paper, details of these tests and processed results are presented and discussed.

Error Assessment of Attitude Determination Using Wireless Internet-Based DGPS (무선인터넷기반의 DGPS를 이용한 동체의 자세결정 성능평가)

  • Lee Hong Shik;Lim Sam Sung;Park Jun Ku
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.2
    • /
    • pp.101-108
    • /
    • 2005
  • Inertial Navigation System has been used extensively to determine the position, velocity and attitude of the body. An INS is very expensive, however, heavy, power intensive, requires long setting times and the accuracy of the system is degraded as time passed due to the accumulated error. Global Positioning System(GPS) receivers can compensate for the Inertial Navigation System with the ability to provide both absolute position and attitude. This study describes a method to improve both the accuracy of a body positioning and the precision of an attitude determination using GPS antenna array. Existing attitude determination methods using low-cost GPS receivers focused on the relative vectors between the master and the slave antennas. Then the positioning of the master antenna is determined in meter-level because the single point positioning with pseudorange measurements is used. To obtain a better positioning accuracy of the body in this research, a wireless internet is used as an alternative data link for the real-time differential corrections and dual-frequency GPS receivers which is expected to be inexpensive was used. The numerical results show that this system has the centimeter level accuracy in positioning and the degree level accuracy in attitude.

Interpolation of GPS Receiver Clock Errors Using Least-Squares Collocation (Least-Squares Collocation을 이용한 GPS 수신기 시계오차 보간)

  • Hong, Chang-Ki;Han, Soohee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.621-628
    • /
    • 2018
  • More than four visible GPS (Global Positioning System) satellites are required to obtain absolute positioning. However, it is not easy to satisfy this condition when a rover is in such unfavorable condition as an urban area. As a consequence, clock-aided positioning has been used as an alternative method especially when the number of visible satellites is three providing that receive clock error information is available. In this study, LSC (Least-Squares Collocation) method is proposed to interpolate clock errors for clock-aided positioning after analyzing the characteristics of receiver clock errors. Numerical tests are performed by using GPS data collected at one of Korean CORS (Continuously Operating Reference Station) and a nearby GPS station. The receiver clock errors are obtained through the DGPS (Differential GPS) positioning technique and segmentation procedures are applied for efficient interpolation. Then, LSC is applied to predicted clock error at epoch which clock information is not available. The numerical test results are analyzed by examining the differences between the original and interpolated clock errors. The mean and standard deviation of the residuals are 0.24m and 0.49m, respectively. Therefore, it can be concluded that sufficient accuracy can be obtained by using the proposed method in this study.

Autonomous Navigation of the Vehicle Via Ultrasonic Positioning System and INS Integration (초음파 위치인식 시스템과 INS 결합을 통한 차량의 자율 주행)

  • Taek-Young Shin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.2_2
    • /
    • pp.359-370
    • /
    • 2023
  • For a vehicle to follow a reference path accurately, its position must be estimated accurately and reliably. In this paper, we propose a lateral control algorithm for autonomous navigation of a vehicle via USAT(Ultrasonic Satellite System), which is an absolute position measurement system using an ultrasonic wave and INS(Inertial Navigation System) integration. In order to estimate the vehicle's parameters, a J-turn test is used. And the autonomous navigation performances of proposed lateral control algorithm and validity of proposed lateral control algorithm are verified and evaluated by simulation and experiments.

Lane Positioning in Highways Based on Road-sign Tracking by Kalman Filter (칼만필터 기반의 도로표지판 추적을 이용한 차량의 횡방향 위치인식)

  • Lee, Jaehong;Kim, Hakil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.50-59
    • /
    • 2014
  • This paper proposes a method of localization of vehicle especially the horizontal position for the purpose of recognizing the driving lane. Through tracking road signs, the relative position between the vehicle and the sign is calculated and the absolute position is obtained using the known information from the regulation for installation. The proposed method uses Kalman filter for road sign tracking and analyzes the motion using the pinhole camera model. In order to classify the road sign, ORB(Oriented fast and Rotated BRIEF) features from the input image and DB are matched. From the absolute position of the vehicle, the driving lane is recognized. The Experiments are performed on videos from the highway driving and the results shows that the proposed method is able to compensate the common GPS localization errors.

LMI-BASED $H_{\infty}$ LATERAL CONTROL OF AN AUTONOMUS VEHICLE BY LOOK-AHEAD SENSING

  • Kim, C.S.;Kim, S.Y.;Ryu, J.H.;Lee, M.H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.609-618
    • /
    • 2006
  • This paper presents the lateral control of an autonomous vehicle by using a look-ahead sensing system. In look-ahead sensing by an absolute positioning system, a reference lane, constructed by straight lanes or circular lanes, was switched by a segment switching algorithm. To cope with sensor noise and modeling uncertainty, a robust LMI-based $H_{\infty}$ lateral controller was designed by the feedback of lateral offset and yaw angle error at the vehicle look-ahead. In order to verify the safety and the performance of lateral control, a scaled-down vehicle was developed and the location of the vehicle was detected by using an ultrasonic local positioning system. In the mechatronic scaled-down vehicle, the lateral model and parameters are verified and estimated by a J-turn test. For the lane change and reference lane tracking, the lateral controllers are used experimentally. The experimental results show that the $H_{\infty}$ controller is robust and has better performance compared with look-down sensing.

A control system for dual-axis linear motor

  • Uchida, Yoshiyuki;Nohira, Shigemitsu;Seike, Yoshiyuki;Shingu, Hiroyasu;Sumi, Tetsuo;Furuhashi, Hideo;Yamada, Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.340-343
    • /
    • 1992
  • Fundamental positioning characteristics of a dual-axis Sawyer linear motor are described. The Sawyer motor is capable of high positional accuracy. An electronic control unit of the motor whose velocity is proportional to the frequency of the electric current was produced in our laboratory. The positioning system was constructed using two Sawyer motors, an air bearings suspension unit and an electronic control unit. The stable motion of the motor was confirmed on the open loop operation. The adjustable operating conditions were the live load of 1 kg, the maximum acceleration of 1.2G and the maximum velocity of 350 mm/s. Absolute positioning accuracy was improved within .+-.5.mu.m, on microstep operating conditions of dividing one pitch of 508.mu.m into 508 steps. The following two conclusions were obtained. An accelerating-cruising-decelerating control is effective for reduction in the travel time required. Also, microstep operation is effective for improving the resolution of position.

  • PDF

A Study on Container Monitoring System Using GPS (GPS를 이용한 컨테이너 모니터링 시스템에 관한 연구)

  • Choi Byoung Gil;Jin Sea il;Hong Sang Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.4
    • /
    • pp.401-409
    • /
    • 2004
  • A monitoring system for container using CPS is the system for positioning and managing containers in real time. CPS is capable of positioning the container, promptly with a reasonable amount of accuracy. Facility managers of ports or airports should have loading, unloading, and keeping freight effectively. Transport companies or freight owners should allocate moving container properly and be able to prevent the loss or delay of freight. In this study, the position and pathways of container are monitored by real-time tracking method. The absolute and relative locations of container are monitored digitally and visually from TC_loading to TC_unloading yard. It has been tested the movement of the containers equiped with GPS, and its accuracy and efficiency were analyzed.