DOI QR코드

DOI QR Code

Autonomous Real-time Relative Navigation for Formation Flying Satellites

  • Shim, Sun-Hwa (Astrodynamics and Control Lab, Department of Astronomy, Yonsei University) ;
  • Park, Sang-Young (Astrodynamics and Control Lab, Department of Astronomy, Yonsei University) ;
  • Choi, Kyu-Hong (Astrodynamics and Control Lab, Department of Astronomy, Yonsei University)
  • Published : 2009.03.15

Abstract

Relative navigation system is presented using GPS measurements from a single-channel global positioning system (GPS) simulator. The objective of this study is to provide the real-time inter-satellite relative positions as well as absolute positions for two formation flying satellites in low earth orbit. To improve the navigation performance, the absolute states are estimated using ion-free GRAPHIC (group and phase ionospheric correction) pseudo-ranges and the relative states are determined using double differential carrier-phase data and singled-differential C/A code data based on the extended Kalman filter and the unscented Kalman filter. Furthermore, pseudo-relative dynamic model and modified relative measurement model are developed. This modified EKF method prevents non-linearity of the measurement model from degrading precision by applying linearization about absolute navigation solutions not about the priori estimates. The LAMBDA method also has been used to improve the relative navigation performance by fixing ambiguities to integers for precise relative navigation. The software-based simulation has been performed and the steady state accuracies of 1 m and 6 mm ($1{\sigma}$ of 3-dimensional difference errors) are achieved for the absolute and relative navigation using EKF for a short baseline leader/follower formation. In addition, the navigation performances are compared for the EKF and the UKF for 10 hours simulation, and relative position errors are mm-level for the two filters showing the similar trends.

Keywords

References

  1. Binning, P. W. & Galysh, I. 1997, in ION GPS, ed. H. L. Kite-Powell(Santa Monica: ION), p. 407
  2. Brown, R. G. & Hwang, P. Y. C. 1997, Introduction to Random Signals and Applied Kalman Filtering (New York: Wiley & Sons, Inc.), p. 214
  3. Busse, F. D., How, J. P., & Simpson, J. 2002, in ION GPS (Oregon:ION), p. 2047
  4. D'mico, S., Gill, E., Garcia, M., & Montenbruck, O. 2006, in Satellite Navigation User Equipment Technology, Navitec 2006(Noordwijk: Satellite Navigation User Equipment Technology)
  5. D'mico, S., Montenbruck, O., Larsson, R., & Chasset, C. 2008, in AIAA Guidance, Navigation and Control Conference(hawaii: AIAA), p. 6661
  6. Ebinuma, T., Bishop, R. H., & Lightsey, E. G. 2001, in ION GPS (Salt Lake City: ION), p.2286
  7. Hofmann-Wllenhof, B., Lichtenegger, H., & Wasle, E. 2008, GNSS, ed. B. Hofmann-Wellenhof (Austria: Springer-Verlage Wien), p.105
  8. Kroes, R. 2006, PhD Dissertation, Delft University of Technology
  9. Lee, D. -J, & Alfriend, K. T. 2003, in AAS/AIAA Astrodynamics Specialist Conference (Big Sky: AIAA) p.230
  10. Leung, S. & Montenbruck, . 2005, JGCD, 28, 2
  11. Marji, Q. 2008, PhD Dissertation, The University of Calgary
  12. Mohiuddin, S. & Psiaki, M. L. 2005, in AAIA Guidance, Navigation, and Control Conference (San Francisco: AIAA), p.6054
  13. Montenbruck, O., Ebinuma, T., Lightsey, E. G., & Leung, S. 2002, Aerospace, Science and technology, 6, 435 https://doi.org/10.1016/S1270-9638(02)01185-9
  14. Montenbruck, O. & Gill, E. 2001, Aerospace, Science and technology, 5, 209 https://doi.org/10.1016/S1270-9638(01)01096-3
  15. Montenbruck, O., Gill, E., & Markgraf, M. 2006, in Satellite Navigation User Equipment Technology, Navitec 2006 (Noordwijk: Satellite Navigation User Equipment Technology)
  16. Moreira, A., Krieger, G., Hajnsek, I., Hounam, D., & Werner, M. 2004, IEEE, 2, 1000
  17. Psiaki, M. L. & Mohiuddin, S. 2007, JGCD, 30, 6
  18. Seidelmann, P. K. 2006, Explanatory Supplement to the Astronomical Almanac, ed. P. K. Seidelmann (Sausalito: Univ, Science Books), p.103
  19. Shim, S. 2009, Msc Thesis, Yonsei University
  20. Stastny, N. B., Bettinger, R. A., & Chavez, F. R. 2008, in AIAA/AAS Astrogynamics Specialist Conference(Hawaii: AIAA), p.6661
  21. Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P.F., & Watkins, M. 2004, Science, 305,5683
  22. Teunissen, P.J.G. 1995, Journal of Geodesy, 70, 65 https://doi.org/10.1007/BF00863419
  23. Vallado, D. A. 2007, Fundamentals of Astrodynamics and Applications, 3rd ed., el. J. R. Wertz (Hwthorne: Microcosm Press), p.536

Cited by

  1. Real-Time Determination of Relative Position Between Satellites Using Laser Ranging vol.29, pp.4, 2012, https://doi.org/10.5140/JASS.2012.29.4.351
  2. Comparison of filter techniques for relative state estimation of in-orbit servicing missions vol.45, pp.1, 2012, https://doi.org/10.3182/20120213-3-IN-4034.00009
  3. Autonomous navigation of a spacecraft formation in the proximity of an asteroid vol.57, pp.8, 2016, https://doi.org/10.1016/j.asr.2015.07.024
  4. Integrated orbit and attitude hardware-in-the-loop simulations for autonomous satellite formation flying vol.52, pp.12, 2013, https://doi.org/10.1016/j.asr.2013.09.015