• Title/Summary/Keyword: ablation

Search Result 1,143, Processing Time 0.04 seconds

Thermal Response Modeling of Thermal Protection Materials and Application Trends of Commercial Codes for Flow-Thermal-Structural Analysis (내열재의 열반응 모델링 및 유동-열-구조해석의 상용코드 적용 동향)

  • Hwang, Ki-Young;Bae, Ji-Yeul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.6
    • /
    • pp.59-71
    • /
    • 2019
  • The numerical analysis of ablative thermal protection systems (TPS) for solid rockets has been carried out with various in-house codes since the 1960s. However, the application scope of commercial codes has been expanded by adding subroutines and user-defined functions (UDF) to codes such as Fluent, Marc, and ABAQUS. In the past, the flow, thermal response and structural analysis of TPS have been performed using separate approaches. Recently, research has been conducted to interrelate them. In this paper, the thermal response characteristics of thermal protection materials, the in-house codes for thermal response analysis, and the research trends of flow-thermal-structure analysis of TPS using commercial codes were reviewed.

Instability of Magnetized Ionization Fronts

  • Kim, Woong-Tae;Kim, Jeong-Gyu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.78.1-78.1
    • /
    • 2014
  • An ionization front (IF) surrounding an H II region is a sharp interface through which a cold neutral gas makes transition to a warm ionized phase by absorbing UV photons from central massive stars. We investigate the structure and instability of a plane-parallel D-type IF threaded by magnetic fields parallel to the front. We find that magnetic fields increase the maximum propagation speed of the IFs, while reducing the expansion factor, defined as the density ratio of neutral to ionized phases. IFs become unstable to distortional perturbations due to gas expansion across the fronts, exactly analogous to the Darrieus-Landau instability of ablation fronts in terrestrial flames. The growth rate of the IF instability is proportional linearly to the perturbation wavenumber as well as the upstream flow speed. The IF instability is stabilized by gas compressibility and becomes completely quenched when the front is D-critical. The instability is also stabilized by magnetic pressure when the perturbations propagate in the direction perpendicular to the fields. When the perturbations propagate in the direction parallel to the fields, on the other hand, it is magnetic tension that reduces the growth rate, completely suppressing the instability when ${\beta}$ < 1.5, with ${\beta}$ denoting the square of the ratio of the sound speed to the Alfven speed in the pre-IF region. When the front experiences an acceleration, the IF instability cooperates with the Rayleigh-Taylor instability to make the front more unstable. We discuss potential effects of IF instability on the evolution and dynamics of IFs in the interstellar medium.

  • PDF

RECONSTRUCTION OF INTRAORAL DEFECT WITH CERVICAL ISLAND FLAP (경부도상피판을 이용한 구강내 결손부의 재건 - 13증례분석)

  • Kim, Jong-Ryoul;Kang, Young-Ki;Seo, Jong-Cheon;Sung, Iel-Yong
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.23 no.3
    • /
    • pp.212-216
    • /
    • 2001
  • The cervical flap, comprising skin, fascia, and platysma muscle, has significant application in the head and neck region after radical ablative surgery for cancer of the oral cavity. The flap may be used for reconstruction of the cheek, floor of the mouth, and lateral side of the tongue. This flap minimizes donor morbidity by use of cervical operation wound and flap size available is adequate for most oral defects and the procedure is relatively simple and time-saving. However the flap is not applicable in patients where there are large tissue defects and metastasis is suspected. We have used the cervical flap for its rapid, simple, and effective closure of oral defects after cancer ablation and found it is very useful for the reconstruction of relatively small oral defects.

  • PDF

New Mechanism of Thin Film Growth by Charged Clusters

  • Hwang, Nong-Moon;Kim, Doh-Yeon
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1999.06a
    • /
    • pp.115-127
    • /
    • 1999
  • The charged clusters or particles, which contain hundreds to thousands of atoms or even more, are suggested to form in the gas phase in the thin film processes such as CVD, thermal evaporation, laser ablation, and flame deposition. All of these processes are also used in the gas phase synthesis of the nanoparticles. Ion-induced or photo-induced nucleation is the main mechanism for the formation of these nanoclusters or nanoparticles inthe gas phase. Charged clusters can make a dense film because of its self-organizing characteristics while neutral ones make a porous skeletal structure because of its Brownian coagulation. The charged cluster model can successfully explain the unusual phenomenon of simultaneous deposition and etching taking place in diamond and silicon CVD processes. It also provides a new interpretation on the selective deposition on a conducting material in the CVDd process. The epitaxial sticking of the charged clusters on the growing surface is gettign difficult as the cluster size increases, resulting in the nanostructure such as cauliflowr or granular structures.

  • PDF

Effects of Heat Treatment on Electrical and Mechanical Properties of Glass Fiber Reinforced Epoxy (열처리가 유리섬유 강화 복합재료의 전기적 및 기계적 성질에 미치는 영향)

  • 이백수;이덕출
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.3
    • /
    • pp.174-180
    • /
    • 1998
  • In this work, the properties of FRP, which is applied recently in the composite insulating materials, by thermal treatment were investigated. The specimens were epoxy glass laminates fabricated by thermal press method and had the volume content of 46[%] cutted $45^{\circ}C$ in the fiber direction and 1.0[mm] thickness. The experimental results showed that the amount of weight loss, wettability, surface potential, and surface resistivity increased up to 200[$^{\circ}C$] as a function of temperature. Usually, most degradations caused the hydrophilic to decrease the contact angle. But, in this work on thermal-degradated FRP, we can confirm the introduction of hydrophobic properties by cross-linking and the ablation of polar small-molecules rather than chain scission and oxidation. Finally, weight loss and contact angle increased. These phenomena show the existence of hydrophobic surface. With the change to the hydrophobic surface and the electrical potential and resistivity on FRP surface increased. But, the dielectric properties and tensile stength are decreased.

  • PDF

Fabrication of Superconducting Narrow Bandpass Filters with Parallel Microstrip Line (마이크로스트립 평행결합선을 이용한 초전도 협대역 필터의 제작)

  • Park, Joo-Hyung;Lee, Sang-Yeol;Yoon, Hyung-Kuk;Yoon, Young-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1549-1551
    • /
    • 1998
  • We have designed and developed narrow bandpass multipole filters for satellite communication using $YBa_2Cu_3O_{7-x}$(YBCO) thin films on MgO substrates. The superconducting film used in this study was prepared by laser ablation on one side polished MgO (100) substrates. A Nd:YAG laser was used to fabricate YBCO thin films. The wave length of the laser was 355 nm. The laser beam was focused onto a YBCO target rotating linearly to avoid deep craters that may eject macroscopic YBCO particles. The YBCO films were grown at $750^{\circ}C$ in the oxygen partial pressure of 200 mTorr. The deposited YBCO thin films were patterned by conventional wet-etching method. The transition temperatures of YBCO thin films were 85 - 88 K and the film thicknesses were about 5,000 $\AA$. By comparing the performances of normal-metal filters and YBCO filters, we observed that superconducting YBCO multipole filters have been showed superior performances at 77 K.

  • PDF

Basic Experimental Investigations to UV Laser Micro-Machining of Nano-Porous Alumina Ceramic Material (나노 다공 구조를 가진 알루미나 재료의 UV 레이저 미세가공에 관한 실험적 기초 연구)

  • Shin, Bo-Sung;Lee, Jung-Han
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.62-67
    • /
    • 2012
  • Recently UV laser is widely used to process micro parts using various materials such as polymers, metals and ceramics because it has a very high intensity at the focused spot area. It is generally known that there are still some difficulties for alumina($Al_2O_3$) ceramics to directly make micro patterns like holes and lines on the surface of working material using 355nm UV laser because the alumina has a very low absorption coefficient at that wavelength. But nowadays new alumna with nano-porous holes is developed and applied to advanced micro functional parts of IT, BT and BT industries. In this paper, we are going to show the mechanism of photo-thermal ablation for nano-porous ceramics. Inside hole there is a lot of multiple reflections along the depth of hole. Experimentally we can find the micro hole drilling and micro grooving on the surface of nano-porous alumina.

Characteristics of Friction Materials for Brake Disc in F-16 B32 Fighter (F-16 B32 전투기용 브레이크 디스크 소재의 물성특성 연구)

  • Kam, Moon-Gap;Kim, Won-Il;Kim, Tae-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.3
    • /
    • pp.98-104
    • /
    • 2007
  • The carbon fiber reinforced carbon composite (CFRC) materials are necessary for the advanced industries that require the thermal resistance. And the development and research for CFRC has been in progress in the field of aerospace and defense industry. CFRC have several advantages and special properties such as excellent anti ablation, outstanding strength retention at very high temperature, high heat capacity and thermal transport, high specific stiffness and strength, and high thermal shock resistance. They have been used as aircraft brake, rocket nozzle, nose cones, jet engine turbine wheels, and high speed craft. Since the technology related to CFRC was prohibited from importing and exporting, we developed our own technology to produce F-16 B32 brake disk made out of CFRC, and then we performed various tests to observe the characteristics of CFRC-based brake disk developed in this study in view of density, strength, friction, specific heat, and heat conductivity.

  • PDF

Ablation of Arg-tRNA-protein transferases results in defective neural tube development

  • Kim, Eunkyoung;Kim, Seonmu;Lee, Jung Hoon;Kwon, Yong Tae;Lee, Min Jae
    • BMB Reports
    • /
    • v.49 no.8
    • /
    • pp.443-448
    • /
    • 2016
  • The arginylation branch of the N-end rule pathway is a ubiquitin-mediated proteolytic system in which post-translational conjugation of Arg by ATE1-encoded Arg-tRNA-protein transferase to N-terminal Asp, Glu, or oxidized Cys residues generates essential degradation signals. Here, we characterized the ATE1−/− mice and identified the essential role of N-terminal arginylation in neural tube development. ATE1-null mice showed severe intracerebral hemorrhages and cystic space near the neural tubes. Expression of ATE1 was prominent in the developing brain and spinal cord, and this pattern overlapped with the migration path of neural stem cells. The ATE1−/− brain showed defective G-protein signaling. Finally, we observed reduced mitosis in ATE1−/− neuroepithelium and a significantly higher nitric oxide concentration in the ATE1−/− brain. Our results strongly suggest that the crucial role of ATE1 in neural tube development is directly related to proper turn-over of the RGS4 protein, which participate in the oxygen-sensing mechanism in the cells.

Chitinase 3-like-1, a novel regulator of Th1/CTL responses, as a therapeutic target for increasing anti-tumor immunity

  • Kim, Do-Hyun;Choi, Je-Min
    • BMB Reports
    • /
    • v.51 no.5
    • /
    • pp.207-208
    • /
    • 2018
  • Chitinase-Like Proteins (CLPs) are an evolutionarily conserved protein which lose their enzymatic activity for degrading chitin macromolecules. Chitinase-3-like-1 (Chi3l1) is a type of CLP that is highly expressed in epithelial cells, macrophages, etc., and is known to have correlations with type 2 inflammation and cancer. Although the increased level of Chi3l1 in the blood was reported in various disease patients, the function of Chi3l1 in adaptive immunity has been totally unknown. Recently, we found that Chi3l1 is expressed in T cells and has a negative regulatory role in T-cell activation and proliferation. A genetic ablation study of Chi3l1 in T cells showed hyperresponsiveness to TcR stimulation, which increased proliferation and Th1 differentiation. A significant increase of $IFN{\gamma}$ signaling in Chi3l1-deficient T cells synergistically increased Th1 and CTL functions against melanoma cells in vitro and in vivo. In addition, targeted knockdown by Chi3l1 siRNA complexed with the cell-penetrating peptide dNP2, which showed decreased pulmonary melanoma metastasis with increased infiltration of Th1 and CTL in the lung. This study first suggests that Chi3l1 is a novel regulator of Th1/CTL responses and could be a target for treating cancer to increase tumor immunity.