• Title/Summary/Keyword: abiotic

Search Result 695, Processing Time 0.031 seconds

AtERF73/HRE1, an Arabidopsis AP2/ERF Transcription Factor Gene, Contains Hypoxia-responsive Cis-acting Elements in Its Promote (애기장대의 AP2/ERF 전사인자인 AtERF73/HRE1의 프로모터에 있어서 저산소 반응 cis-조절 요소의 분석)

  • Hye-Yeon Seok;Huong Thi Tran;Sun-Young Lee;Yong-Hwan Moon
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.34-42
    • /
    • 2023
  • In a signal transduction network, from the perception of stress signals to stress-responsive gene ex- pression, binding of various transcription factors to cis-acting elements in stress-responsive promoters coordinate the adaptation of plants to abiotic stresses. Among the AP2/ERF transcription factor family genes, group VII ERF genes, such as RAP2.12, RAP2.2, RAP2.3, AtERF73/HRE1, and AtERF71/ HRE2, are known to be involved in the response to hypoxia stress in Arabidopsis. In this study, we dissected the HRE1 promoter to identify hypoxia-responsive region(s). The 1,000 bp upstream promoter region of HRE1 showed increased promoter activity in Arabidopsis protoplasts and transgenic plants under hypoxia conditions. Analysis of the promoter deletion series of HRE1, including 1,000 bp, 800 bp, 600 bp, 400 bp, 200 bp, 100 bp, and 50 bp upstream promoter regions, using firefly luciferase and GUS as reporter genes indicated that the -200 to -100 region of the HRE1 promoter is responsible for the transcriptional activation of HRE1 in response to hypoxia. In addition, we identified two putative hypoxia-responsive cis-acting elements, the ERF-binding site and DOF-binding site, in the -200 to -100 region of the HRE1 promoter, suggesting that the expression of HRE1 might be regulated via the ERF transcription factor(s) and/or DOF transcription factor(s). Collectively, our results suggest that HRE1 contains hypoxia-responsive cis-acting elements in the -200 to -100 region of its promoter.

Evaluation of Habitat Suitability of Honey Tree Species, Kalopanax septemlobus Koidz., Tilia amurensis Rupr. and Styrax obassis Siebold & Z ucc. in the Baekdudaegan Mountains using MaxEnt Model (MaxEnt 모형을 활용한 백두대간에 자생하는 주요 밀원수종인 음나무, 피나무, 쪽동백나무의 서식지 적합성 평가)

  • Sim, Hyung Seok;Lee, Min-Ki;Lee, Chang-Bae
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.1
    • /
    • pp.50-60
    • /
    • 2022
  • In this study, habitat suitability was analyzed for three major honey tree species, namely Kalopanax septemlobus, Tilia amurensis, and Styrax obassis, in the Baekdudaegan Mountains using MaxEnt models. The AUC values indicating the prediction accuracies of the models were 0.747, 0.790, and 0.755 for K. septemlobus, T. amurensis, and S. obassis, respectively. The most important variables for K. septemlobus and T. amurensis were elevation, mean annual temperature, and slope, whereas mean annual temperature, elevation, and mean annual precipitation were the most important predictors for S. obassis. For all three studied species, elevation and mean annual temperature were the most important topographic and climatic factors, respectively, indicating that such variables are crucial for explaining species distribution. Honey tree species are essential resources in forest beekeeping, a high value-added process for improving forest income, and this study identified sites with the potential for management of such species in the Baekdudaegan Mountains, where it may be possible to establish a honey forest. However, the accuracy of the models should be improved through comprehensive analysis with abiotic variables, such as soil properties and aridity, which affect the distribution of honey tree species, as well as biotic variables, such as interspecific competition.

Phytosociological Vegetation Classification and Community Characteristics in Maruguem (the Ridge Line) Area of Mt. Jirisan (Yuksipryeong to Cheonwangbong), the Baekdudaegan (백두대간 지리산권역(육십령-천왕봉 구간) 마루금의 식물사회학적 유형분류 및 군집 특성)

  • Song, Ju Hyeon;Kim, Ho Jin;Lee, Jeong Eun;Cho, Hyun Je;Park, Wan Geun;Yun, Chung Weon
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.1
    • /
    • pp.19-35
    • /
    • 2022
  • In this study, the forest vegetation structure in the Maruguem (ridge line) area from Yuksipryeong to Cheonwangbong, Baekdudaegan, was analyzed using vegetation classification, importance values, species diversity, and NMS. Data were collected using 373 quadrates in a Braun-Blanquet vegetation survey conducted from May to October 2020. Vegetation was classified into nine vegetation units, which were verified using DCA analysis. Vegetation units 1-5, which were grouped by sub-alpine region, showed high importance values, mainly for sub-alpine vegetation, such as Abies koreana, Picea jezoensis, Pinus koraiensis, and Betula ermanii. In Maruguem, which is not high above sea level, importance values for species such as Pinus densiflora and Quercus serrata were high due to the topographical characteristics of the ridge. The A. koreana community (vegetation unit 1-5), which had a relatively high average elevation, had higher species diversity compared with that of other vegetation units. According to NMS analysis, for abiotic environmental factors, there was a positive correlation between vegetation units 1, 2, 4, and 5 and elevation. Overall, this study describes all low-elevation area vegetation (P. densiflora and Lindera erythrocarpa) to high-elevation area vegetation (A. koreana and P. jezoensis) as well as the characteristics of the Baekdudaegan ridge vegetation that did not include valley vegetation.

Life Cycle Environmental Analysis of Valuable Metal (Ag) Recovery Process in Plating Waste Water (폐도금액내 유가금속(Ag) 회수 공정에 대한 전과정 환경성 분석)

  • Da Yeon Kim;Seong You Lee;Yong Woo Hwang;Taek Kwan Kwon
    • Resources Recycling
    • /
    • v.32 no.2
    • /
    • pp.12-18
    • /
    • 2023
  • In 2018, the demand for silver (referred to as Ag) in the electrical and electronics sector was 249 million tons. The demand stood at 81 million tons in the solar module production sector. Currently, due to the rapid increase in solar module installation, the demand for silver is increasing drastically in Korea. However, Korea's natural metal resources and reserves are insufficient in comparison to their consumption, and the domestic silver ore self-sufficiency rate was as low as 2.2% as of 2021. This implies that a recycling technology is necessary to recover valuable metal resources contained in the waste plating solution generated in the metal industry. Therefore, this study compared and analyzed, the results of the impact evaluation through life cycle assessment according to an improvement in the process of recovery of valuable metals in the waste plating solution. The process improvement resulted in reducing GWP (Global Warming Potential) and ADP(Abiotic Depletion Potential) by 50% and 67%, respectively. The GWP of electricity and industrial water was reduced by 98% and 93%, respectively, which significantly contributed to the minimization of energy and water consumption. Thus, the improvement in recycling technology has a high potential to reduce chemical and energy use and improve resource productivity in the urban mining industry.

Growth Characteristics of Lettuce and Korean Mint as Affected by Microbubble in a Closed-type Plant Production System (밀폐형 식물생산시스템에서 마이크로버블 처리에 따른 상추와 배초향의 생장 특성)

  • Eun Won Park;Hee Sung Hwang;Hyeon Woo Jeong;Seung Jae Hwang
    • Journal of Bio-Environment Control
    • /
    • v.32 no.3
    • /
    • pp.234-241
    • /
    • 2023
  • This study was conducted to investigate the growth of lettuce (Lactuca sativa L.) and Korean mint (Agastache rugosa Kuntze) with microbubble in a closed-type plant production system (CPPS) with a deep flow technique (DFT). Lettuce and Korean mint were grown in CPPS for 23 days. Microbubble was treated for 5 minutes daily at 9:00, 13:00, and 17:00 for 16 days. The leaf length, leaf width, leaf area, and fresh and dry weights of lettuce and Korean mint were significantly lower in microbubble than in the control. The total root length, root surface area, and the number of root tips of lettuce and Korean mint were significantly lower in the microbubble than in the control. In the case of average root diameter, there was no difference between the treatments of lettuce. However, Korean mint significantly increased in thickness in the microbubble treatment, indicating variations among the different crops. The results of the research indicated that microbubble treatment in the DFT inhibited plant growth by inducing abiotic stress in lettuce and Korean mint.

Effects of Short Microwave Irradiation Time at the Seedlings Stage on the Growth and Secondary Metabolite Contents of Lettuce (Lactuca sativa L.) (유묘단계에서 단시간 마이크로웨이브 처리가 상추의 생육 및 이차대사산물 함량에 미치는 영향)

  • Yong Jae Lee;Su Yong Park;Ju Hyung Shin;Seung Yong Hahm;Gwang Ya Lee;Jong Seok Park
    • Journal of Bio-Environment Control
    • /
    • v.32 no.3
    • /
    • pp.217-225
    • /
    • 2023
  • This experiment was conducted to investigate the effects of microwave irradiation on the growth and secondary metabolite contents of lettuce seedlings. Seedlings at three weeks after sowing were treated by a microwave oven for 0, 4, 8, and 12 seconds with 200 W. After cultivation in a close plant production system for 4 weeks, plant growth measurements and secondary metabolite analysis were performed. The results showed that the fresh and dry weights of the shoot and root, leaf area, leaf length, and the number of leaves were decreased as increasing the microwave treatment times. Chlorophyll a and b, total carotenoids were increased and total phenolics were decreased at the 12-second treatment compared to the 4-second treatment. Total flavonoid contents were decreased at the 8-second treatment compared to the control. These results suggest that the changes in the levels of secondary metabolites were caused by oxidative stress. Although there was no significant difference in secondary metabolite contents excluding total flavonoid contents on the microwave treatments compared to the control, the significant difference suggests that the microwave treatment of 200 W and 2.45 GHz may alter secondary metabolite contents of lettuce after 4 weeks.

Biocontrol Activities of Peribacillus butanolivorans KJ40, Bacillus zanthoxyli HS1, B. siamensis H30-3 and Pseudomonas sp. BC42 on Anthracnose, Bacterial Fruit Blotch and Fusarium Wilt of Cucumber Plants (Peribacillus butanolivorans KJ40, Bacillus zanthoxyli HS1, B. siamensis H30-3와 Pseudomonas sp. BC42에 의한 오이 탄저병, 박과류 과실썩음병과 오이 덩굴쪼김병의 생물방제 효과검정)

  • Jiwon Kim;Mee Kyung Sang
    • Research in Plant Disease
    • /
    • v.29 no.2
    • /
    • pp.188-192
    • /
    • 2023
  • Abiotic and biotic stresses have been a serious threat to crop growth and productivity in the agricultural system. In this study, four strains (HS1, H30-3, KJ40, and BC42), which have biological activities related to disease suppression or alleviation of salinity and drought stresses, were tested for broad-spectrum biocontrol activity against anthracnose caused by Colletotrichum orbiculare, a bacterial fruit blotch caused by Acidovorax citrulli, and Fusarium wilt caused by Fusarium oxysporum in cucumber plants. As a result of test, when the four strains were drenched into the soil, anthracnose in cucumber leaves significantly decrease; strain KJ40 suppressed disease incidence by A. citrulli; strain BC42 significantly reduced bacterial fruit blotch and Fusarium wilt compared to control. Therefore, strain KJ40 could be a biocontrol candidate for controlling anthracnose through induced systemic resistance and the disease caused by A. citrulli as well as alleviating drought stress; strain BC42 has broad-spectrum biocontrol activity against anthracnose, Fusarium wilt, and bacterial fruit blotch.

Reduction of Stress Caused by Drought and Salt in Rice (Oryza sativa L.) Crops through Applications of Selected Plant Extracts and the Physiological Response Mechanisms of Rice

  • Hyun Hwa Park;Young Seon Lee;Yong In Kuk
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.57-57
    • /
    • 2022
  • In many areas of the world, salt damage and drought have had a negative impact on human survival due to a decrease in agricultural productivity. For instance, about 50% of agricultural land will be affected by salt damage by 2050. Biostimulants such as plant extracts can not only increase the nutrient utilization efficiency of plants, but also promote plant growth and increase resistance to abiotic or biotic stress. Therefore, the objective of this study was to determine how selected plant extracts might reduce levels of stress caused by drought and salt and to better understand the physiological response mechanisms of rice plants. In this study, we used Soybean leaves, Soybean stems and Allium tuberosum, Allium cepa, Hizikia fusiforme, and Gracilaria verrucosa extracts were used. These extracts had been used in previous studies and were found to be effective. The materials were dried in a dry oven at 50℃ for 5 days and ground using a blender. Each 50 g of materials was put in 1 L of distilled water, stirred for 24 hours, filtered using 4 layers of mirocloth, and then concentrated using a concentrator. Rice (cv. Hopumbyeo) seeds were immersed and germinated, and then sown in seedbeds filled with commercial soil. In drought experiments, three rice seedlings at 1 week after seeding was transplanted into 100 ml cups filled with commercial soils and grown until the 4-leaf stage. For this experiment, the soil weight in a cup was equalized, and water was allowed to become 100% saturated and then drained for 24 hours. Thereafter, plant extracts at 3% concentrations were applied to the soils. For NaCl treatments, rice plants at 17 days after seeding were treated with either 100 mM NaCl or plant extracts at 1%+ 100 mM NaCl combinations in the growth chamber. Leaf injury, relative water content, photosynthetic efficiency, and chlorophyll contents were measured at 3, 5, and 6 days after treatments. Shoot fresh weight of rice under drought conditions increased 28-37% in response to treatments of Soybean leaf, Soybean stem, Allium tuberosum, Allium cepa, Hizikia fusiforme, and Gracilaria verrucosa extracts at 3% when compared with control plants. Shoot fresh weight of rice subjected to 100 mM NaCl treatments also increased by 6-24% in response to Soybean leaf, Soybean stem, Allium tuberosum, Allium cepa, Hizikia fusiforme, and Gracilaria verrucosa extracts at 3% when compared with control plants. Compared to the control, rice plants treated with these six extracts and subjected to drought conditions had significantly higher relative water content, Fv/Fm, total chlorophyll and total carotenoids than control plants. With the exception of relative water contents, rice plants treated with the six extracts and subjected to salt stress (100 mM NaCl treatments) had significantly higher Fv/Fm, total chlorophyll and total carotenoids than control plants. However, the type of extract used did not produce significant difference in these parameters. Thus, all the plant extracts used in this study could mitigate drought and NaCl stresses and could also contribute substantially to sustainable crop production.

  • PDF

Investigation of Physiological and Yield Responses to Temperature Increases in Northern-ecotype Garlic (Allium sativum L. ) 'Uiseong' in Temperature Gradient Tunnels (한지형 마늘 '의성'의 온도구배하우스내 온도상승에 따른 생육 및 생리장해 조사)

  • Byung-Hyuk Kim;Min-Seon Choi;Chun Hwan Kim;Minji Shin;Seong Eun Lee;Kyung Hwan Moon;Hyun-Hee Han
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.276-283
    • /
    • 2023
  • Garlic (Allium sativum L.) is one of the most important vegetables used in various foods in Korea and many countries. The growth of garlic is influenced by various abiotic factors such as cultivation temperature, humidity, minimum temperature duration, and photoperiod. This study investigated the effects of increasing temperatures on the plant growth of the northern- ecotype garlic 'Uiseong' in a temperature gradient tunnel. As a result, temperature increase led to decreases in the bulb diameter, weight, and clove pieces of garlic. The rise of cultivation temperature increased the occurrence rate of incomplete bolting in the Northern-ecotype garlic 'Uiseong', resulting in decreases in productivity and a decrease in the yield of marketable garlic, indicating that temperature increases affect the development of garlic bulb formation. The findings of this study are expected to contribute as foundational data for understanding the growth responses of the northern-ecotype 'Uiseong' to increasing cultivation temperatures. The results of this study can be used to develop designing garlic growth models. In addition, the results of this study can improve understanding the interaction between increased temperature and garlic growth.

Sulfasalazine Induces Apoptosis and Cell Cycle Arrest in RAW 264.7 Macrophages (마우스 대식세포에서 설파살라진의 세포사멸 및 세포주기 정체에 미치는 영향 연구)

  • Seong Mi Kim;Sohyeon Park ;Jin-Kyung Kim
    • Journal of Life Science
    • /
    • v.33 no.10
    • /
    • pp.767-775
    • /
    • 2023
  • Sulfasalazine is a disease-modifying antirheumatic abiotic agent. It is a derivative of aminosalicylic acid and has been used for the treatment of various inflammatory diseases, such as rheumatoid arthritis, ulcerative colitis, and Crohn's disease, since it was first synthesized in 1941 and approved as a medicine in the United States in 1950. However, its mechanism of action has not yet been clearly identified. In this study, the effects of sulfasalazine on cell survival, apoptosis, and cell cycle progression in macrophages, which are major immune cells that regulate inflammatory responses, were investigated using mouse macrophage RAW 264.7 cells. Sulfasalazine inhibited the viability of RAW 264.7 cells in a dose-dependent manner, starting at a concentration of 0.25 mM. Annexin-V staining was used to confirm that the decrease in cell viability was due to apoptosis, and the number of Annexin-V-positive cells increased significantly at a concentration of 0.25 mM or higher. The effect of sulfasalazine on the expression of key proteins that regulate the G0/G1 phase of the cell cycle was also investigated. Sulfasalazine treatment significantly increased the expression of the cyclin-dependent kinase inhibitors p21 and p27 in RAW 264.7 cells. Although sulfasalazine is frequently used as a control drug in studies on inflammatory diseases, such as inflammatory colitis and rheumatoid arthritis, studies on its effect on macrophages are very limited. Therefore, the results of this study are expected to provide vital information on the use of sulfasalazine as a disease treatment.