DOI QR코드

DOI QR Code

Effects of Short Microwave Irradiation Time at the Seedlings Stage on the Growth and Secondary Metabolite Contents of Lettuce (Lactuca sativa L.)

유묘단계에서 단시간 마이크로웨이브 처리가 상추의 생육 및 이차대사산물 함량에 미치는 영향

  • Yong Jae Lee (Department of Horticultural Science, Chungnam National University) ;
  • Su Yong Park (Department of Horticultural Science, Chungnam National University) ;
  • Ju Hyung Shin (Department of Bio-AI Convergence, Chungnam National University) ;
  • Seung Yong Hahm (Department of Bio-AI Convergence, Chungnam National University) ;
  • Gwang Ya Lee (Institute of Agricultural Science, Chungnam National University) ;
  • Jong Seok Park (Department of Horticultural Science, Chungnam National University)
  • 이용재 (충남대학교 원예학과) ;
  • 박수용 (충남대학교 원예학과) ;
  • 신주형 (충남대학교 바이오 AI 융합학과) ;
  • 함승용 (충남대학교 바이오 AI 융합학과) ;
  • 이광야 (충남대학교 농업과학연구소) ;
  • 박종석 (충남대학교 농업생명과학대학 원예학과)
  • Received : 2023.01.16
  • Accepted : 2023.07.03
  • Published : 2023.07.31

Abstract

This experiment was conducted to investigate the effects of microwave irradiation on the growth and secondary metabolite contents of lettuce seedlings. Seedlings at three weeks after sowing were treated by a microwave oven for 0, 4, 8, and 12 seconds with 200 W. After cultivation in a close plant production system for 4 weeks, plant growth measurements and secondary metabolite analysis were performed. The results showed that the fresh and dry weights of the shoot and root, leaf area, leaf length, and the number of leaves were decreased as increasing the microwave treatment times. Chlorophyll a and b, total carotenoids were increased and total phenolics were decreased at the 12-second treatment compared to the 4-second treatment. Total flavonoid contents were decreased at the 8-second treatment compared to the control. These results suggest that the changes in the levels of secondary metabolites were caused by oxidative stress. Although there was no significant difference in secondary metabolite contents excluding total flavonoid contents on the microwave treatments compared to the control, the significant difference suggests that the microwave treatment of 200 W and 2.45 GHz may alter secondary metabolite contents of lettuce after 4 weeks.

본 실험은 마이크로웨이브 처리가 상추 유묘의 생육 변화와 이차대사산물 함량의 변화를 알아보고자 수행되었다. 파종 후 3주째 상추 유묘에 2.45GHz 주파수와 200W의 마이크로웨이브를 0, 4, 8 및 12초 동안 처리하고, 4주간 식물공장에서 재배한 후 생육 및 성분 분석을 수행하였다. 지하부와 지상부의 생체중과 건물중, 엽면적, 엽장 및 엽수는 마이크로웨이브 처리시간이 증가할수록 감소하였다. 4초 처리구와 비교하여 12초 처리구에서 chlorophyll a, chlorophyll b 및 총 carotenoids의 함량이 증가되었으며 총 페놀 함량은 감소하였다. 무처리구와 비교하여 8초 처리구에서 총 플라보노이드 함량이 감소하였다. 이러한 결과들은 산화적 스트레스에 의해 이차대사산물 함량이 변화된 것으로 사료된다. 총 플라보노이드 함량을 제외한 이차대사산물 함량은 각 처리구에서 무처리구와 비교하여 유의한 차이가 없었지만, 각 처리구 사이의 유의한 차이는 200W와 2.45GHz의 마이크로웨이브 처리가 4주 후 상추의 이차대사산물 함량에 영향을 줄 수 있다는 것을 시사한다.

Keywords

Acknowledgement

본 결과물은 농림축산식품부의 재원으로 농림식품기술기획평가원의 농업기반 및 재해대응 기술개발사업의 지원을 받아 연구되었음(322082-3). 2023년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임(No.RS-2022-00155857, 인공지능융합혁신인재양성(충남대학교)).

References

  1. Akula R., and G.A. Ravishankar 2011, Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6:1720-1731. doi:10.4161/psb.6.11.17613
  2. Alemzadeh I., and S. Nejati 2009, Phenols removal by immobilized horseradish peroxidase. J Hazard Mater 166: 1082-1086. doi:10.1016/j.jhazmat.2008.12.026
  3. Alfred M.M., and H. Eitan 1979, Polyphenol oxidases in plants. Phytochemistry 18:193-215. doi:10.1016/0031-9422(79)80057-6
  4. Arora A., M.G. Nair, and G.M. Strasburg 1998, Structure-activity relationships for antioxidant activities of a series of flavonoids in a liposomal system. Free Radic Biol Med 24:1355-1363. doi:10.1016/S0891-5849(97)00458-9
  5. Austen N., H.J. Walker, J.A. Lake, G.K. Phoenix, and D.D. Cameron 2019, The regulation of plant secondary metabolism in response to abiotic stress: interactions between heat shock and elevated CO2. Front Plant Sci 10:1463. doi:10.3389/fpls.2019.01463
  6. Banik S., S. Bandyopadhyay, and S. Ganguly 2003, Bioeffects of microwave--a brief review. Bioresour Technol 87:155-159. doi:10.1016/S0960-8524(02)00169-4
  7. Campisi A., M. Gulino, R. Acquaviva, P. Bellia, G. Raciti, R. Grasso, F. Musumeci, A. Vanella, and A. Triglia 2010, Reactive oxygen species levels and DNA fragmentation on astrocytes in primary culture after acute exposure to low intensity microwave electromagnetic field. Neurosci Lett 473:52-55. doi:10.1016/j.neulet.2010.02.018
  8. Chang C.C., M.H. Yang, H.M. Wen, and J.C. Chern 2002, Estimation of total flavonoid content in propolis by two complementary colometric methods. J Food Drug Anal 10:3. doi:10.38212/2224-6614.2748
  9. Chen Y.P., J.F. Jia, and Y.J. Wang 2009, Weak microwave can enhance tolerance of wheat seedlings to salt stress. J Plant Growth Regul 28:381-385. doi:10.1007/s00344-009-9106-7
  10. Cos P., L. Ying, M. Calomme, J.P. Hu, K. Cimanga, B.V. Poel, L. Pieters, A.J. Vlietinck, and D.V. Berghe 1998, Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. J Nat Prod 61:71-76. doi:10.1021/np970237h
  11. Das K., and A. Roychoudhury 2014, Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53. doi:10.3389/fenvs.2014.00053
  12. Demain A.L., and A. Fang 2000, The natural functions of secondary metabolites. In A Fiechter, ed, History of Modern Biotechnology I: Advances in Biochemical Engineering/Biotechnology, Vol 69. Springer, Berlin, Heidelberg, Germany, pp 1-39. doi:10.1007/3-540-44964-7_1
  13. Durdik M., P. Kosik, E. Markova, A. Somsedikova, B. Gajdosechova, E. Nikitina, E. Horvathova, K. Kozics, D. Davis, and I. Belyaev 2019, Microwaves from mobile phone induce reactive oxygen species but not DNA damage, preleukemic fusion genes and apoptosis in hematopoietic stem/progenitor cells. Sci Rep 9:16182. doi:10.1038/s41598-019-52389-x
  14. Evans J.R. 2013, Improving photosynthesis. Plant Physiol 162:1780-1793. doi:10.1104/pp.113.219006
  15. Fujikawa H, H. Ushioda, and Y. Kudo 1992, Kinetics of Escherichia coli destruction by microwave irradiation. Appl Environ Microbiol 58:920-924. doi:10.1128/aem.58.3.920-924.1992
  16. Garcia-Macias P., M. Ordidge, E. Vysini, S. Waroonphan, N.H. Battey, M.H. Gordon, P. Hadley, P. John, J.A. Lovegrove, and A. Wagstaffe 2007, Changes in the flavonoid and phenolic acid contents and antioxidant activity of red leaf lettuce (Lollo Rosso) due to cultivation under plastic films varying in ultraviolet transparency. J Agric Food Chem 55:10168-10172. doi:10.1021/jf071570m
  17. Griffin K.L., O.R. Anderson, M.D. Gastrich, J.D. Lewis, G. Lin, W. Schuster, J.R. Seemann, D.T. Tissue, M.H. Turnbull, and D. Whitehead 2001, Plant growth in elevated CO2 alters mitochondrial number and chloroplast fine structure. Proc Natl Acad Sci USA 98:2473-2478. doi:10.1073/pnas.041620898
  18. Halmagyi A., E. Surducan, and V. Surducan 2017, The effect of low-and high-power microwave irradiation on in vitro grown Sequoia plants and their recovery after cryostorage. J Biol Phys 43:367-379. doi:10.1007/s10867-017-9457-4
  19. Hao Y.H., L. Zhao, and R.Y. Peng 2015, Effects of microwave radiation on brain energy metabolism and related mechanisms. Mil Med Res 2:4. doi:10.1186/s40779-015-0033-6
  20. Hawrylak-Nowak B., S. Dresler, K. Rubinowska, R. MatraszekGawron, W. Woch, and M. Hasanuzzaman 2018, Selenium biofortification enhances the growth and alters the physiological response of lamb's lettuce grown under high temperature stress. Plant Physiol Biochem 127:446-456. doi:10.1016/j.plaphy.2018.04.018
  21. Hoz A., A. Diaz-Ortiz, and A. Moreno 2005, Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem Soc Rev 34:164-178. doi:10.1039/B411438H
  22. Jayasanka S.M.D.H., and T. Asaeda 2014, The significance of microwaves in the environment and its effect on plants. Environ Rev 22:220-228. doi:10.1139/er-2013-0061
  23. Jin L., Y. Zheng, X. Liu, Y. Zhang, Z. Li, Y. Liang, S. Zhu, H. Jiang, Z. Cui, and S. Wu 2022, Magnetic composite rapidly treats Staphylococcus aureus-infected osteomyelitis through microwave strengthened thermal effects and reactive oxygen species. Small 18:2204028. doi:10.1002/smll.202204028
  24. Kesari K.K., M.H. Siddiqui, R. Meena, H.N. Verma, and S. Kumar 2013, Cell phone radiation exposure on brain and associated biological systems. Indian J Exp Biol 51:187-200.
  25. Khalafallah A.A., and S.M. Sallam 2009, Response of maize seedlings to microwaves at 945 MHz. Rom J Biophys 19:49-62.
  26. Khalil H., and R. Villota 1988, Comparative study on injury and recovery of Staphylococcus aureus using microwaves and conventional heating. J Food Prot 51:181-186. doi:10.4315/0362-028X-51.3.181
  27. Korean Statistical Information Service (KOSIS) 2021, https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1ET0028&vw. Accessed 27 November 2022 (in Korean)
  28. Krinsky N.I. 2001, Carotenoids as antioxidants. Nutrition 17: 815-817. doi:10.1016/S0899-9007(01)00651-7
  29. Kumari N., S. Verma, and V. Sharma 2018, Manipulating tomato plant electric signaling system by microwave radiation to enhance crop productivity and nutritional value. Comput Electron Agric 154:330-340. doi:10.1016/j.compag.2018.09.020
  30. Lichtenthaler H.K., and C. Buschmann 2001, Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. Curr Protoc Food Anal Chem 1:F4-3.1-8 doi:10.1002/0471142913.faf0403s01
  31. Liu W., Y. Feng, S. Yu, Z. Fan, X. Li, J. Li, and H. Yin 2021, The flavonoid biosynthesis network in plants. Int J Mol Sci 22:12824. doi:10.3390/ijms222312824
  32. Lopez-Orenes A., M.A. Ferrer, and A.A. Calderon 2022, Microwave radiation as an inducer of secondary metabolite production in Drosera rotundifolia in vitro plantlets. J Nat Prod 85:2104-2109. doi:10.1021/acs.jnatprod.2c00031
  33. MacDonald M.J., and G.B. D'Cunha 2007, A modern view of phenylalanine ammonia lyase. Biochem Cell Biol 85:273-282. doi:10.1139/O07-018
  34. Maslova T.G., E.F. Markovskaya, and N.N. Slemnev 2021, Functions of carotenoids in leaves of higher plants. Biol Bull Rev 11:476-487. doi:10.1134/S2079086421050078
  35. Mierziak J., K. Kostyn, and A. Kulma 2014, Flavonoids as important molecules of plant interactions with the environment. Molecules 19:16240-16265. doi:10.3390/molecules191016240
  36. Neugart S., S. Baldermann, F.S. Hanschen, R. Klopsch, M. Wiesner-Reinhold, and M. Schreiner 2018, The intrinsic quality of brassicaceous vegetables: how secondary plant metabolites are affected by genetic, environmental, and agronomic factors. Sci Hortic 233:460-478. doi:10.1016/j.scienta.2017.12.038
  37. Oh J.S., K. Kawamura, B.K. Pramanik, and A. Hatta 2008, Investigation of water-vapor plasma excited by microwaves as ultraviolet light source. IEEE Trans Plasma Sci 37:107-112. doi:10.1109/TPS.2008.2007732
  38. Perez-Galvez A., I. Viera, and M. Roca 2020, Carotenoids and chlorophylls as antioxidants. Antioxidants 9:505. doi:10.3390/antiox9060505
  39. Quintana-Cabrera R., A. Mehrotra, G. Rigoni, and M.E. Soriano 2018, Who and how in the regulation of mitochondrial cristae shape and function. Biochem Biophys Res Commun 500:94-101. doi:10.1016/j.bbrc.2017.04.088
  40. Randhir R., and K. Shetty 2004, Microwave-induced stimulation of L-DOPA, phenolics and antioxidant activity in fava bean (Vicia faba) for Parkinson's diet. Process Biochem 39:1775-1784. doi:10.1016/j.procbio.2003.08.006
  41. Rivero R.M., J.M. Ruiz, P.C. Garcia, L.R. Lopez-Lefebre, E. Sanchez, and L. Romero 2001, Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci 160:315-321. doi:10.1016/S0168-9452(00)00395-2
  42. Samanta A., G. Das, and S.K. Das 2011, Roles of flavonoids in plants. Int J Pharm Sci Tech 6:12-35.
  43. Senavirathna M.D.H.J., A. Takashi, and Y. Kimura 2014, Short-duration exposure to radiofrequency electromagnetic radiation alters the chlorophyll fluorescence of duckweeds (Lemna minor). Electromagn Biol Med 33:327-334. doi:10.3109/15368378.2013.844705
  44. Severo J., A. Tiecher, F.C. Chaves, J.A. Silva, and C.V. Rombaldi 2011, Gene transcript accumulation associated with physiological and chemical changes during developmental stages of strawberry cv. Camarosa. Food Chem 126:995-1000. doi:10.1016/j.foodchem.2010.11.107
  45. Sharma V.P., H.P. Singh, D.R. Batish, and R.K. Kohli 2010, Cell phone radiations affect early growth of Vigna radiata (mung bean) through biochemical alterations. Z Naturforsch C J Biosci 65:66-72. doi:10.1515/znc-2010-1-212
  46. Sharma V.P., H.P. Singh, R.K. Kohli, and D.R. Batish 2009, Mobile phone radiation inhibits Vigna radiata (mung bean) root growth by inducing oxidative stress. Sci Total Environ 407:5543-5547. doi:10.1016/j.scitotenv.2009.07.006
  47. Shckorbatov Y., V. Pasiuga, N. Kolchigin, V. Grabina, D. Ivanchenko, V. Bykov, and O. Dumin 2011, Cell nucleus and membrane recovery after exposure to microwaves. Proc Latv Acad Sci B: Nat Exact Appl Sci 65:13-20. doi:10.2478/v10046-011-0013-5
  48. Singh P., Y. Arif, A. Bajguz, and S. Hayat 2021, The role of quercetin in plants. Plant Physiol Biochem 166:10-19. doi:10.1016/j.plaphy.2021.05.023
  49. Soran M.-L., M. Stan, u. Niinemets, and L. Copolovici 2014, Influence of microwave frequency electromagnetic radiation on terpene emission and content in aromatic plants. J Plant Physiol 171:1436-1443. doi:10.1016/j.jplph.2014.06.013
  50. Staehelin L.A. 2003, Chloroplast structure: from chlorophyll granules to supra-molecular architecture of thylakoid membranes. Photosynth Res 76:185-196. doi:10.1023/A:1024994525586
  51. Stark G. 2005, Functional consequences of oxidative membrane damage. J Membr Biol 205:1-16. doi:10.1007/s00232-005-0753-8
  52. Tibbitts T.W., and G. Bottenberg 1976, Growth of lettuce under controlled humidity levels. J Am Soc Hortic Sci 101:70-73. doi:10.21273/JASHS.101.1.70
  53. Tiwari R., and C. Rana 2015, Plant secondary metabolites: a review. Int J Eng Res Generic Sci 3:661-670. https://doi.org/10.18488/journal.aefr/2015.5.4/102.4.661.670
  54. Tungmunnithum D., A. Thongboonyou, A. Pholboon, and A. Yangsabai 2018, Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines 5:93. doi:10.3390/medicines5030093
  55. Urquiaga I., and F. Leighton 2000, Plant polyphenol antioxidants and oxidative stress. Biol Res 33:55-64. doi:10.4067/S0716-97602000000200004
  56. Vollmer M. 2004, Physics of the microwave oven. Phys Edu 39:74. doi:10.1088/0031-9120/39/1/006
  57. Wang N., W. Liu, L. Yu, Z. Guo, Z. Chen, S. Jiang, H. Xu, H. Fang, Y. Wang, Z. Zhang, and X. Chen 2020, HEAT SHOCK FACTOR A8a modulates flavonoid synthesis and drought tolerance. Plant Physiol 184:1273-1290. doi:10.1104/pp.20.01106
  58. Xu J., F. Belanger, and B. Huang 2008, Differential gene expression in shoots and roots under heat stress for a geothermal and non-thermal Agrostis grass species contrasting in heat tolerance. Environ Exp Bot 63:240-247. doi:10.1016/j.envexpbot.2007.11.011
  59. Yao C., J. Dong, K. Ren, L. Sun, H. Wang, J. Zhang, H. Wang, X. Xu, B. Yao, H. Zhou, L. Zhao, and R. Peng 2023, Accumulative effects of multifrequency microwave exposure with 1.5 GHz and 2.8 GHz on the structures and functions of the immune system. Int J Environ Res Public Health 20:4988. doi:10.3390/ijerph20064988
  60. Zeng S.W., Q.L. Huang, and S.M. Zhao 2014, Effects of microwave irradiation dose and time on Yeast ZSM-001 growth and cell membrane permeability. Food Control 46: 360-367. doi:10.1016/j.foodcont.2014.05.053
  61. Zhao L., R. Peng, Y. Gao, S. Wang, L. Wang, Q. Dong, X. Xu, and J. Ma 2007, Mitochondria morphologic changes and metabolic effects of rat hippocampus after microwave irradiation. Chin J Radiol Med Prot 27. doi:10.3760/CMA.J.ISSN.0254-5098.2007.06.033
  62. Zhu L., C. Yan, and Z. Li 2016, Microalgal cultivation with biogas slurry for biofuel production. Bioresour Technol 220:629-636. doi:10.1016/j.biortech.2016.08.111