• Title/Summary/Keyword: a two-layer structure

Search Result 1,138, Processing Time 0.032 seconds

Visualization of Epidermis and Dermal Cells in ex vivo Human Skin Using the Confocal and Two-photon Microscopy

  • Choi, Sang-Hoon;Kim, Wi-Han;Lee, Yong-Joong;Lee, Ho;Lee, Weon-Ju;Yang, Jung-Dug;Shim, Jong-Won;Kim, Jin-Woong
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.61-67
    • /
    • 2011
  • The confocal laser scanning microscopy and two-photon microscopy was implemented based on a single laser source and an objective lens. We imaged and compared the morphology of identical sites of ex vivo human skin using both microscopes. The back-scattering emission from the sample provided the contrast for the confocal microscopy. The intrinsic autofluorescence and the second harmonic generation were used as the luminescence source for the two-photon microscopy. The wavelength of the Ti:Sapphire laser was tuned at 710 nm, which corresponds to the excitation peak of NADH and FAD in skin tissue. The various cell layers in the epidermis and the papillary dermis were clearly distinguished by both imaging modalities. The two-photon microscopy more clearly visualized the intercellular region and the nucleus of the cell compared to the confocal microscopy. The fibrous structures in the dermis were more clearly resolved by the confocal microscopy. Numerous cells in papillary dermal layer, as deep as $100\;{\mu}m$, were observed in both CLSM and two-photon microscopy. While most previous studies focused on fibrous structure imaging (collagen and elastin fiber) in the dermis, we demonstrated that the combined imaging with the CLSM and two-photon microscopy can be applied for the non-invasive study of the population, distribution and metabolism of papillary dermal cells in skin.

Response Characteristic of the Dual-frame Passive Control System with the Natural Period Difference between the Strength Resistant Core and Frame Structure (강도저항형 코어와 프레임 구조의 진동주기차를 이용한 듀얼프레임 제진시스템의 응답특성)

  • Kim, Tae Kyung;Choi, Kwang Yong;Oh, Sang Hoon;Ryu, Hong Sik
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.273-282
    • /
    • 2015
  • In this study, shaking table test has been carried out for the dual frame passive control system for seismic performance verification of the proposed system. The proposed system was separated into two independent frameworks that are strength resistant core and frame structure by connecting to the damper. Moreover, the seismic performance improvement of the proposed system has been verified by comparing and analyzing the experimental results of the proposed system with an existing core system. As a result of the shaking table test, acceleration and displacement responses of dual-frame vibration control system are decreased than those of the existing strength resistant type core system. In the case of the core system, while the damage was concentrated on the column of first floor, the damage of the dual system was dispersed in each layer. The damage also was concentrated on the damper, almost no damage occurs to the structural members. It has been emphasized that installed dampers in the proposed dual system reduce the input energy of whole structure by absorbing seismic input energy, which leads overall system damage to be reduced.

A Study on the South Korean Coastal Front (한국 남해연안 전선에 관한 연구)

  • Gong, Yeoung
    • 한국해양학회지
    • /
    • v.1
    • /
    • pp.25-36
    • /
    • 1971
  • The structure of the south Korean coastal front, their fluctuation, the properties and the probable effects of the front on the mackerel fishery are discussed based on the data of 26 cruises in 1967-1969 in the southern waters of Korea. In the south Korean coastal water the annual variations of the properties shows the greatest magnitude among the other water masses in the north of East China Sea. The salinity profile provides a fairly accurate description of the interface between the two kinds of water and agree with the temperature structure in winter. The temperature front does not always coincide with the salinity front in summer, while the former corresponds to the later in winter. The sharpest and most stable front between the Tsushima Warm Current and the south Koren coastal water was found in autumn and winter. In autumn 1969, the most successful catches of mackerel was recorded in the south Korean front of great borizontal gradients of properties(temperature 5.0$^{\circ}C$/10miles, salinity 1.2 /10miles) in the east of Cheju Is. If future investigation finds the peculiar oceanographical conditions like that shown in summer, 1969, the conditions of frontal layer in coming autumn will be estimated and finally the success of the mackerel fishery will be predictable from preseason information on temperature and salinity structure in the southern waters of Korea.

  • PDF

The Characteristics of Anatomical Structure and Fruit Quality According to Fruit Developmental Stage of Pyrus pyrifolia Nakai cv. Manpungbae ('만풍배'의 생육기별 해부학적 구조와 과실품질)

  • Park, Ji-Eun;Kwon, YongHee;Lee, ByulHaNa;Park, YoSup;Jung, MyungHee;Choi, Jin-Ho;Park, Hee-Seung
    • Horticultural Science & Technology
    • /
    • v.31 no.4
    • /
    • pp.407-414
    • /
    • 2013
  • This study was carried out to understand the physiological characteristics of 'Manpungbae' (Pyrus pyrifolia Nakai) pears through the seasonal changes of pericarp structure and anatomical differences between bagging and non-bagging treatment, and also fruit quality and peel coloration characteristics at the harvest time. The pericarp at full bloom was consists of outer epidermis, hypodermis, parenchyma cell, and inner epidermis from the exterior. The cell layers from the outer epidermis to vascular bundle increased rapidly 7-10 layers to 18-26 layers from full bloom (FB) to 77 days after full bloom (DAFB) and did not change significantly until maturity. Thus, the cell division period of 'Manpungbae' pear was until 77 DAFB and during this period, the thickness from hypodermis to vascular bundle increased from $73.1{\mu}m$ to $195{\mu}m$ in this period. Stone cells were formed from seven to 21 DAFB and stone cell clusters were formed around 49 DAFB. The cork cell layer was formed between 49 and 77 DAFB. 'Manpungbae' fruit pericarp was consists of 4.5 layers of the cork cell layers and seven layers of hypodermis which has the tannin at harvest time (161 DAFB). Comparison of the fruit enlargement and fruit structure development by bagging or non-bagging showed that 'Manpungbae' fruits without bagging had more than three cork cell layer than those with bagging at maturity. The size of stone cell clusters were varied in two treatments. Fruit weight was higher in the non-bagging treatment but there was no difference in soluble solid contents (SSC) between two treatments. The weight of the 'Manpunbae' fruit was distributed from 301 g to more 900 g and the average fruit weight was 677.2 g at harvest time, and fruits in the range of 551-800 g accounted for 71.6% of total production. The SSC, acidity and SSC/acidity ratio was $10.2-12.1^{\circ}Brix$, 0.10-1.24% and 9.76-14.31 respectively, and the SSC was higher in bigger fruit which had a very higher positive correlation with a fruit weight. However, the fruit firmness tended to be lower with fruit size which had a very higher negative correlation with the fruit weight and SSC. The cork cell layer numbers between yellowish brown and green pericarp were not different significantly, in 3.8 and 3.5 respectively.

Influence of the Mars atmosphere model on aerodynamics of an entry capsule: Part II

  • Zuppardi, Gennaro
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.3
    • /
    • pp.229-249
    • /
    • 2020
  • This paper is the logical follow-up of four papers by the author on the subject "aerodynamics in Mars atmosphere". The aim of the papers was to evaluate the influence of two Mars atmosphere models (NASA Glenn and GRAM-2001) on aerodynamics of a capsule (Pathfinder) entering the Mars atmosphere and also to verify the feasibility of evaluating experimentally the ambient density and the ambient pressure by means of the methods by McLaughlin and Cassanto respectively, therefore to correct the values provided by the models. The study was carried out computationally by means of: i) a code integrating the equations of dynamics of an entry capsule for the computation of the trajectories, ii) two Direct Simulation Monte Carlo (DSMC) codes for the solution of the 2-D, axial-symmetric and 3-D flow fields around the capsule in the altitude interval 50-100 km. The computations verified that the entry trajectories of Pathfinder from the two models, in terms of the Mach, Reynolds and Knudsen numbers, were very different. The aim of the present paper is to continue this study, considering other aerodynamic problems and then to provide a contribution to a long series of papers on the subject "aerodynamics in Mars atmosphere". More specifically, the present paper evaluated and quantified the effects from the two models of: i) chemical reactions on aerodynamic quantities in the shock layer, ii) surface temperature, therefore of the contribution of the re-emitted molecules, on local (pressure, skin friction, etc.) and on global (drag) quantities, iii) surface recombination reactions (catalyticity) on heat flux. The results verified that the models heavily influence the flow field (as per the shock wave structure) but, apart from the surface recombination reactions, the effects of the different conditions on aerodynamics of the capsule are negligible for both models and confirmed what already found in the previous paper that, because of the higher values of density from the NASA Glenn model, the effects on aerodynamics of a entry capsule are stronger than those computed by the GRAM-2001 model.

The effect of melt instability on the liquid phase epitaxy (용액 불안정이 InGaAsP/InP 액상결정성장에 미치는 영향)

  • 오수환;안세경;홍창희
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.5
    • /
    • pp.438-442
    • /
    • 1997
  • In this study we report the effect of melt instability on the Liquid Phase Epitaxy. We made a new graphite boat of the structure relieving the instability of melt. It did not improve the uniformity of each layers but also reduced the thickness of growth layers and the deviation of the thickness over 1/2, 1/3 respectively. Moreover, we could get the growth layer of about 80$\AA$. With the point of melt stability in view we investigated the effect of InP seed used in two phase solution method. It is concluded that the quality of layers grown by the single crystal is superior to that by the poly crystal in two phase solution method.

  • PDF

Spinning Apparatus for the Dragline Silk in the Funnel-web Spider Agelena limbata(Araneae: Agelenidae)

  • Park, Jong-Gu;Moon, Myung-Jin
    • Animal cells and systems
    • /
    • v.12 no.2
    • /
    • pp.109-116
    • /
    • 2008
  • Among the four kinds of silk glands in the funnel-web spider Agelena limbata, the ampullate gland for dragline silk production is the most predominate one in both sexes, and is composed of three functional parts-excretory duct, storage ampulla and convoluted tail regions. Two pairs of major ampullate glands send secretory ductules to the anterior spinnerets, and another two pairs of minor ampullate glands supply the middle spinnerets. There are no apparent differences between the major and minor ampullate glands not only the external spigots but also their internal silk glands. However, the microstructure is very unique in this spider, because each gland has spherical shaped storage sac with twig-like branched tails. Nevertheless, the wall of the secretory region is similarly composed of a single layer of epithelial cells. The mature secretory silks in glandular epithelium are closely packed and accumulated as electron-opaque vesicles. Most of the secretory products which originated from the rough endoplasmic reticula(rER) are grown up by fusion with the surrounding small vesicles however, the Golgi complex does not seem to play an important role in this process of secretion.

Synthesis and Characterization of Mn3O4-Graphene Nanocomposite thin Film by an ex situ Approach

  • Kang, Myunggoo;Kim, Jung Hun;Yang, Woochul;Jung, Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1067-1072
    • /
    • 2014
  • In this study, we report a new approach for $Mn_3O_4$-graphene nanocomposite by ex situ method. This nanocomposite shows two-dimensional aggregation of nanoparticle, and doping effect by decorated manganese oxide ($Mn_3O_4$), as well. The graphene film was made through micromechanical cleavage of graphite on the $SiO_2/Si$ wafer. Manganese oxide ($Mn_3O_4$) nanoparticle with uniform cubic shape and size (about $5.47{\pm}0.61$ nm sized) was synthesized through the thermal decomposition of manganese(II) acetate, in the presence of oleic acid and oleylamine. The nanocomposite was obtained by self-assembly of nanoparticles on graphene film, using hydrophobic interaction. After heat treatment, the decorated nanoparticles have island structure, with one-layer thickness by two-dimensional aggregations of particles, to minimize the surface potential of each particle. The doping effect of $Mn_3O_4$ nanoparticle was investigated with Raman spectra. Given the upshift in positions of G and 2D in raman peaks, we suggest that $Mn_3O_4$ nanoparticles induce p-doping of graphene film.

Subsurface anomaly detection utilizing synthetic GPR images and deep learning model

  • Ahmad Abdelmawla;Shihan Ma;Jidong J. Yang;S. Sonny Kim
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.203-209
    • /
    • 2023
  • One major advantage of ground penetrating radar (GPR) over other field test methods is its ability to obtain subsurface images of roads in an efficient and non-intrusive manner. Not only can the strata of pavement structure be retrieved from the GPR scan images, but also various irregularities, such as cracks and internal cavities. This article introduces a deep learning-based approach, focusing on detecting subsurface cracks by recognizing their distinctive hyperbolic signatures in the GPR scan images. Given the limited road sections that contain target features, two data augmentation methods, i.e., feature insertion and generation, are implemented, resulting in 9,174 GPR scan images. One of the most popular real-time object detection models, You Only Learn One Representation (YOLOR), is trained for detecting the target features for two types of subsurface cracks: bottom cracks and full cracks from the GPR scan images. The former represents partial cracks initiated from the bottom of the asphalt layer or base layers, while the latter includes extended cracks that penetrate these layers. Our experiments show the test average precisions of 0.769, 0.803 and 0.735 for all cracks, bottom cracks, and full cracks, respectively. This demonstrates the practicality of deep learning-based methods in detecting subsurface cracks from GPR scan images.

Multi-station joint inversion of receiver function and surface-wave phase velocity data for exploration of deep sedimentary layers (심부 퇴적층 탐사를 위한 수신함수와 표면파 위상속도를 이용한 다측점 자료의 복합 역산)

  • Kurose, Takeshi;Yamanaka, Hiroaki
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.19-28
    • /
    • 2007
  • In this study, we propose a joint inversion method, using genetic algorithms, to estimate an S-wave velocity structure for deep sedimentary layers from receiver functions and surface-wave phase velocity observed at several sites. The method takes layer continuity over a target area into consideration by assuming that each layer has uniform physical properties, especially an S-wave velocity, at all the sites in a target area in order to invert datasets acquired at different sites simultaneously. Numerical experiments with synthetic data indicate that the proposed method is effective in reducing uncertainty in deep structure parameters when modelling only surface-wave dispersion data over a limited period range. We then apply the method to receiver functions derived from earthquake records at one site and two datasets of Rayleigh-wave phase velocity obtained from microtremor array surveys performed in central Tokyo, Japan. The estimated subsurface structure is in good agreement with the results of previous seismic refraction surveys and deep borehole data. We also conclude that the proposed method can provide a more accurate and reliable model than individual inversions of either receiver function data only or surface-wave dispersion data only.