• Title/Summary/Keyword: a redundant joint

Search Result 105, Processing Time 0.026 seconds

Configuration Control of a Redundant Manipulator Optimizing Stiffness and Joint Torque

  • Jin, Jaehyun;Ahn, Sungho;Jung, Jaehoo;Yoon, Jisup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.104.5-104
    • /
    • 2002
  • In this paper, we focus on a configuration control method of a redundant manipulator. The configuration of a redundant manipulator has been determined by geometry constraints and additional conditions, such as obstacle avoidance and dexterity optimization. This paper also utilizes optimization, and the additional condition (or performance index) to be optimized is stiffness of the end-effector and joints' torque. Stiffness and torque may be a natural attribute to be controlled during working and those vary as manipulator configuration does. So the optimal configuration from the viewpoint of stiffness and joint torque is studied. If the servo control mechanism of the joints Is assumed to be a...

  • PDF

A NUMERICAL METHOD OF PREDRTERMINED OPTIMAL RESOLUTION FOR A REDUNDANT MANIPULATOR

  • Won, Jong-Hwa;Choi, Byoung-Wook;Chung, Myung-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1145-1149
    • /
    • 1990
  • This paper proposes a numerical method for redundant manipulators using predetermined optimal resolution. In order to obtain optimal joint trajectories, it is desirable to formulate redundancy resolution as an optimization problem having an integral cost criterion. We predetermine the trajectories of redundant joints in terms of the Nth partial sum of the Fourier series, which lead to the solution in the desirable homotopy class. Then optimal coefficients of the Fourier series, which yield the optimal solution within the predetermined class, are searched by the Powell's method. The proposed method is applied to a 3-link planar manipulator for cyclic tasks in Cartesian space. As the results, we can obtain the optimal solution in the desirable homotopy class without topological liftings of the solution. To show the validity of the proposed method, we analyze both optimal and extremal solutions by the Fast Fourier Transform (FFT) and discuss joint trajectories on the phase plane.

  • PDF

Redundant Robot Control by Neural Optimization Networks (신경망 최적화 회로에 의한 여유자유도를 갖는 로보트의 제어)

  • 현웅근;서일홍
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.6
    • /
    • pp.638-648
    • /
    • 1990
  • An effective resolved motion control method of redundant manipulators is proposed to minimize the energy consumption and to increase the dexterity while satisfying the physical actuator constraints. The method employs the neural optimization networks, where the computation of Jacobian matrix is not required. Specifically, end effector movement resulting from each joint differential motion is first separated into orthogonal and tangential components with respect to a given desired trajectory. Then the resolved motion is obtained by neural optimization networks in such a way that 1) linear combination of the orthogonal components should be null 2) linear combination of the tangential components should be the differential length of the desired trajectory, 3) differential joint motion limit is not violated, and 4) weighted sum of the square of each differential joint motion is minimized. Here the weighting factors are controlled by a newly defined joint dexterity measure as the ratio of the tangential and orthogonal components.

  • PDF

A Kinematic Control Method of Redundant Manipulator for the Avoidance of Joint Position and Velocity Limits (여유자유도를 갖는 로보트의 관절변수의 위치 및 속도 제한범위 회피를 위한 기구학적 제어방법)

  • 한석균;서일홍;임준홍
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.6
    • /
    • pp.598-605
    • /
    • 1988
  • A kinematic control method for the redundant robot manipulator is proposed, where redundancy is utilized to avoid the limit of joint positions and velocities. For the given tadk, the joint positions are obtained in such a way that each joint is placed as close to its center point as possible by considering the velocity limit. The robot is, therefore, controlled so that the joints move with the acceptable velocities and lie within the reachable ranges. To show the validities of the proposed method, two examples are illustrated by computer simulations for the RHINO-XR robot with sliding base.

  • PDF

Extended impedance control of redundant manipulators

  • Oh, Yonghwan;Chung, Wankyun;Youm, Youngil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.73-76
    • /
    • 1996
  • An impedance control approach based on an extended task space formulation is addressed to control the kinematically redundant manipulators. Defining a weighted inner product in joint space, a minimal parametrization of the null space can be achieved and we can visualize the null space motion explicitly. Based on this formulation, we propose a control method called inertially decoupled impedance controller to control the motion of the end-effector as well as the internal motion expanding the conventional impedance control. Some numerical simulations are given to demonstrate the performance of the proposed control method.

  • PDF

Fuzzy Logic Control for a Redundant Manipulator -Resolved Motion Rate Control

  • Kim, Sung-Woo;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.479-484
    • /
    • 1992
  • The resolved motion rate control (RMRC) is converting to Joint space trajectory from given Cartesian space trajectory. The RMRC requires the inverse of Jacobian matrix. Since the Jacobian matrix of the redundant robot is generally not square, the pseudo-inverse must be introduced. However the pseudo-inverse is not easy to be implemented on a digital computer in real time as well as mathematically complex. In this paper, a simple fuzzy resolved motion rate control (FRMRC) that can replace the RMRC using pseudo-inverse of Jacobian is proposed. The proposed FRMRC with appropriate fuzzy rules, membership functions and reasoning method can solve the mapping problem between the spaces without complexity. The mapped Joint space trajectory is sufficiently accurate so that it can be directly used to control redundant manipulators. Simulation results verify the efficiency of the proposed idea.

  • PDF

Obstacle-avoidance Algorithm using Reference Joint-Velocity for Redundant Robot Manipulator with Fruit-Harvesting Applications

  • Y.S. Ryuh;Ryu, K.H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.638-647
    • /
    • 1996
  • Robot manipulators for harvesting fruits must be controlled to track the desired path of end-effector to avoid obstacles under the consideration of collision free area and safety path. This paper presents a robot path control algorithm to secure a collision free area with the recognition of work environments. The flexible space, which does not damage fruits or branches of tree due to their flexibility and physical properties , extends the workspace. Now the task is to control robot path in the extended workspace with the consideration of collision avoidance and velocity limitation at the time of collision concurrently. The feasibility and effectiveness of the new algorithm for redundant manipulators were tested through simulations of a redundant manipulator for different joint velocities.

  • PDF

Kinematic Calibration Method for Redundantly Actuated Parallel Mechanisms (여유구동 병렬기구의 기구학적 보정)

  • 정재일;김종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.355-360
    • /
    • 2002
  • To calibrate a non-redundantly actuated parallel mechanism, one can find actual kinematic parameters by means of geometrical constraint of the mechanism's kinematic structure and measurement values. However, the calibration algorithm for a non-redundant case does not apply fur a redundantly actuated parallel mechanism, because the angle error of the actuating joint varies with position and the geometrical constraint fails to be consistent. Such change of joint angle error comes from constraint torque variation with each kinematic pose (meaning position and orientation). To calibrate a redundant parallel mechanism, one therefore has to consider constraint torque equilibrium and the relationship of constraint torque to torsional deflection, in addition to geometric constraint. In this paper, we develop the calibration algorithm fir a redundantly actuated parallel mechanism using these three relationships, and formulate cost functions for an optimization algorithm. As a case study, we executed the calibration of a 2-DOF parallel mechanism using the developed algorithm. Coordinate values of tool plate were measured using a laser ball bar and the actual kinematic parameters were identified with a new cost function of the optimization algorithm. Experimental results showed that the accuracy of the tool plate improved by 82% after kinematic calibration in a redundant actuation case.

  • PDF

A Study on Impact Control of Planar Redundant Manipulator using A Intelligent Control (지능제어를 이용한 평면 여자유도 매니퓰레이터의 충돌제어에 관한 연구)

  • Yoo, Bong-Soo;Koo, Seong-Wan;Joh, Joong-Seon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.787-796
    • /
    • 2008
  • When the manipulator collides with surroundings, there occurs an impulse. To reduce the impulse, the self motion should maintain the manipulator's position by the minimally effective mass. At this time, we can use the local joint torque minimization algorithm to resolve the redundancy. In this study, to reduce the impulse and damages by the impact between the manipulator and surroundings, new control algorithm for the minimization of the joint torque using the kinetic redundancy and the impact minimization is proposed. It adapts fuzzy logic and genetic algorithm to the conventional local joint torque minimization algorithm. The proposed algorithm is applied to a 3-DOF redundant planar manipulator. Simulation results show that the proposed algorithm works well.

Study on Optimal Design of Fault-Tolerant Spatial Redundant Manipulators (고장에 견디는 공간형 여유자유도 매니퓰래이터의 최적설계에 관한 연구)

  • Kim, Whee-Kuk;Kim, Dong-Ku;Yi, Byung-Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.97-108
    • /
    • 1996
  • Optimal design of fault-tolerant, spatial type redundant manipulators is treated in this paper. Design objective is to guarantte three degree-of -freedom translational motions in the task space, upon failure of one arbitrary joint of 4 degree-of-freedom manipulators. Noticing the nonfault-tolerant characteristics of current, wrist-type industrial manipulators, five different fault-tolerant spatial-type manipulators which have 4 degree-of-freedom structures with one joint redundancy are suggested. Faault-tolerant character-sitics of two redundant manipulators anr investigated based on the analysis of the self-motion and the null-space elements. Finally, in order to maximize the fault-tolerant capability, optimal design is performed for a spatial-type manipulator with respect to the global isotropic index, and the performance enhancement of the optimized case is shown by simulation.

  • PDF