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Abstract

This paper proposes a numerical method for redundant
manipulators using predetermined optimal resolution. In order to
obtain optimal joint trajectories, it is desirable to formulate redun-
dancy resolution as an optimization problem having an integral
cost criterion. We predetermine the trajectories of redundant
joints in terms of the Nth partial sum of the Fourier series, which
lead to the solution in the desirable homotopy class. Then
optimal coefficients of the Fouricr series, which yield the optimal
solution within the predetermined class, are searched by the
Powell’s method. The proposed method is applied to a 3-link
planar manipulator for cyclic tasks in Cartesian space. As the
results, we can obtain the optimal solution in the desirable homo-
topy class without topological liftings of the solution. To show
the validity of the proposed method, we analyze both optimal and
extremal solutions by the Fast Fourier Transform (FFT) and dis-
cuss joint trajectories on the phase plane.

1. Introduction

The kinematics of redundant manipulators is represented by
x =1 1

where x is an m -dimensional vector representing the position and
oricntation of the end-effector in Cartesian space, € is an n-
dimensional vector representing joint variables, and f is a vector
function consisting of m scalar functions, with m < n. Even
though both x and © are functions of time, for brevity, we use x
and O instead of x(z) and 6(¢), respectively. From (1), the
diffcrential kincmatics, which relates the rates of changes x and
8, is described as

£=J6 @)

where J is a known m X n Jacobian matrix.

For a redundant manipulator, it is natural to make use of
(n — m) dimensional redundant degrees of freedom so that the
manipulator optimizes secondary objective while performing the
primary task in Cartesian space. Secondary objectives are in the
form of an instantancous cost criterion (local optimization
method) or an integral cost criterion (global optimization
mcthod). If the Jacobian matrix J is rectangular with m < n, the
general solution 8 of (2) becomes

0=J%x+( -J")z 3)

where J* is the Moore-Penrose generalized inverse of J. If J has
full rank, then J* becomes J’(JJ‘)"1 known as pseudoinversc of
J. The matrix 7 in (3) is an n X n identity matrix and / —J*/J
is the null space projection matrix. The vector z is an n-
dimensional arbitrary vector. Based on (3) or modificd equations
from (3), several local optimization methods have been suggested
by many researchers to resolve the redundancy instantancously.
By specifying z, redundant manipulators have been used to avoid
joint limits, singularities, and obstacles [1]-[3].

Klein and Huang [4] show that the closed trajectorics in
joint space can not be generally obtained for the closcd tasks in
Cartesian space by local optimization methods. Baillicul [5]
proves that, without further modification, the generalized inverse
method can not avoid kinematic singularities, and also a globally
optimal solution is not guaranteed. Meanwhile, Chang [6] sug-
gests an inverse kinematic method for cyclic tasks instead of a
generalized inverse method. As the results of the described
short-comings, glebal optimizaton methods are preferable to
local optimization mcthods.

Martin et al. [7] propose a global optimization method for
cyclic tasks by using Euler-Lagrange equations. They discuss the
necessary conditions and the periodic boundary conditions for
optimal joint trajectories of a redundant manipulator, where the
problem is to minimize the following performance index
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subject to the kinematic constraints (1) and the periodic boundary
conditions

8(to) = 8(zy),

5
6(tg) = 6(ty) ©

where ¢, and ¢ are the initial and final time, respectively.

As a reasonable integrand of the performance index,
G (8, 0, t), we choose the following integrand

G®, 6, 1)= %é'w-‘é +2(0) )

where W is the n x n diagonal weighting matrix chosen by a
designer to reflect the relative significance of joint velocities and
£(0) is a function of configuration such as the manipulability
measure [8] or the distance to some obstacles. In case of W =/
and g (@) = 0, (6) becomes the norm of joint velocity. From (4)
and (6), if the performance index is
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then the necessary condition becomes
8 =J'G - J6). (8

In addition, if the given task is described by a closed path
in Cartesian space, then joint trajectories must be periodic, i.e.,
(5) becomes additional constraints. Therefore, the necessary con-
dition (8) must be solved with the periodic boundary conditions
(5) to obtain an optimal solution. Unfortunately, due to the
existence of muitiple nonhomotopic extremal solutions, all these
extremal solutions arc not optimal and the optimal solution
among them is not always unique.

The remainder of this paper is organized as follows. In
Scction I, the problem is described and the proposed method is
derived. In Section III, the proposed method is applied to two
tasks and the solutions are compared with those of other
methods. In Section IV, we show the validity of assumptions by
the FFT and analyze both optimal and extremal solutions on the
phase plane. Finally, we draw concluding remarks in Section V.

II. Predetermined Optimal Resolution

Problem Formulation

In this paper we formulate a global optimization problem
with an integral cost criterion (4) for a task (1). Particularly, if
the given task in Cartesian space is closed in space or cyclic in
time, then periodic joint trajectories are necessarily required for
practical applications. Thereforc, (5) becomes additional boun-
dary conditions. The global optimization problem for a cyclic
task can be summarized as follows:

t, .
min [ G@®, 6, 1) dr
ig

subject to
x = f(8)
and
8(zp) = 8(1y),
. : 9
8tp) = 6(2y). ®

Observations on the Solution for a Cyclic Task

If a task under consideration is cyclic, then the kinematic
equation (1) can be represented as a periodic function with period
T, where T is given by T =1t; ~ 1, Then we can introduce a
new constant value g, defined by

2n
Wy = . 10
o = " (10
This new constant is called as the fundamental frequency of the
task. Since we already know that the solution is periodic as far
as (5) is satisfied, the optimal solution 6 can be described as

0(t)=0p— T b, + Y agsin(kw, 1)+ Y bycos(kw,t), (11)
k=1 k=1 k=1

where g, and b, are the Fourier coefficicnts, and 8y is the given
initial configuration, i.e., 8(zg) = 6.

Assumptions

To generate the optimal solution of a cyclic task, we make
two assumptions for the solution bascd on the previous observa-
tions.

1) The optimal solution represented by the Fourier series has

the lowest sum of the squared amplitude of harmonic com-

ponents, which is known as the total power of a signal.

2) Also it has monotonically decreasing cocfficients for

higher harmonic components.

The first assumption is based on the fact that the smaller is
the better as far as joint trajectorics satisfy (1), (4), and (5). It is
easy to observe that unnecessarily large values of physical vari-
ables, c.g., velocity, acceleration, torque, and etc., are not desir-
able by any mecans. Basically joint trajectories depend on the
behavior of all these physical variables, so the first assumption
naturally excludes extremal solutions. The second assumption
can be interpreted as follows: If a task has a fundamental fre-
quency g, the higher frequency harmonics appearing in joint tra-
jectories are not desirable. And if the coefficients of harmonics
are not monotonically decreasing, then undesirable higher fre-
quency harmonics has larger value than lower frequency hanmon-
ics.

Predetermined Trajectories of Redundant Joints

For a rcdundant manipulator, joint valucs are not deter-
mined uniquely, it has (# —m) redundant degrees of frcedom
which can be used to optimize some performance indices. On
the other hand, this redundancy makes it difficult to solve inverse
kinematics. We know that rcdundant degrees of freedom dcter-
mine the configuration of a manipulator while tracking a given
task. In other words, if the trajectories of redundant degrees of
freedom 8, are predetcrmined in the desirable homotopy class,
the remaining degrees of freedom 0, are accordingly determined
in the desirable homotopy class, too. Bascd on the assumptions,
(n — m) redundant degrees of freedom represented by the Fourier
serics lead to the desirable homotopy class depending on their
Fourier coefficients. Even though theoretically infinilc series is
rcquired to represent any periodic trajectory, it is cnough to
approximate by the Nth partial sum of the Fourier serics. As the
results of approximate predctermination, the trajectorics of redun-
dant degrees of freedom 6, are given by

N N N
Bj(t)=9j0—kzlbjk +kZla]ksin(k0)0t)+ kzlbjkcos(kwot) (12)

where j = 1,2, .., n - m, and a; and b, are the cocfficients of
kth harmonics of the jth joint. By differentiating (12), we can
obtain joint velocity

. N N
8, (=00 X, kaj cos (kwyt) — 0y 3 kb sinkogt).  (13)
k=1 k=1
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Then, the remaining joints 8, can be determined by solving
nonredundant inverse kinematics from given x and predetermined
0,. So, (1) can be rewritien as

x=£(®,.8,), (14)

where we have m equations with m unkriowns. We denote the
above kinematics as f’. Then, resulting nonredundant inverse
kinematics problem becomes

8, =f"'(x, 8,). (15)

Multidimensional Minimum Search

To obtain an optimal solution, we change the variables, 6
and 9 to the Fourier coefficients of the approximated series, @;,
and bj. From (12) and (15), all © can be described by the
Fourier coefficients. Also all 8 can be described by the Fourier
cocfficients from (13) and the inverse differential kinematics
which can be derived from (2). Therefore, we can rewrite the
given problem (9) as follows:

h
min [ Gap, b, £) dt
fo

subject to

x = f'a bu) (16)
where j=1,..,n-m and k=1,..,N. We note that the
periodic boundary conditions are already implicitly included in
(16).

It is obvious that the only remaining work to solve the
problem is finding the optimal coefficients. Therefore, reformu-
lated problem becomes a multidimensional minimum search
problem. In this work, we adopt the Powell’s method to find the
optimal cocfficierits a; and by, where j=1,.,n-m and
k=1,..,N[9%.

III. Tasks and Solutions

We show two major aspects of the proposed method
through numerical examplcs. One is that the solution by the pro-
posed method can be a good approximation to the exact optimal
solution. The other is that the proposed method does not require
any additional efforts on the topological liftings of the trajectories
for the optimal solution. To show the validity, two cyclic tasks
are applied to a 3-link planar manipulator. Consider the 3-link
planar manipulator in a horizontal plane in Fig. 1. We choose the
position of the end-effector in 2-D space described in Cartesian
coordinates. Accordingly, x € R?, and the degree of redundancy
at nonsingular points is equal to one. Link parameters of a 3-link
planar manipulator are [; = 3.0, [, = 2.5, and /3 = 2.0 units,
respectively.

If we denote s; =sin(8,), c¢; = cos(8,), s, = 5in(0;+8,),
and ¢ = cos(8,+8,), the kinematic equations are

|

- hey+ e+ e
sy + s+ s3]

an
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In the numerical examples, cyclic tasks are described as

.| 9.
where R is the radius of the circle and C is the x—axis position
of the center of the circle. The task is to rotate the circle of R

unit radius, centered at (C, 0), in unit time, in a counterclock-
wise, thus the initial position is (C—R, 0) at 15 = 0.

—R cos(2mt) +

—~R sin(2me) a8

x(t)

Fig. 1. Geometry of a three-link planar manipulator for Task 1

A. Exact vs. Approximate Optimal Solution

Consider Task 1 whichis R = 2.3 and C = 2.5 units. For
given task, we formulate the problem which has an integral cost
criterion (7) subject to kinematic constraints (1) and periodic
boundary conditions (5) for given initial configuration 6, This
problem can be solved symbolically by the Euler-Lagrange equa-
tions and exact symbolic solution consisting of the nccessary
conditions for the optimality (8) and the periodic boundary condi-
tions (5) can be obtained. Fig. 2 shows an exact optimal solution
of Task I [7]. At the same time, we draw an cxtremal solution
of Task 1 obtained from the nccessary conditions (8) at different
initial joint velocity 6.

rad
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0

-.787

-1.57

-2.36

-3.15

Fig. 2. Optimal and extremal solutions of Task 1

On the other hand, since the proposed method is based on
the N th partial sum of the Fourier series, the corresponding solu-
tion is inherently approximation of the exact optimal solution.
To compare the approximate optimal solutions with the exact
optimal solutions, we predetermine 0, as



N N N
0,(t)=019— YT b + T asin(kogt) + X becos(kwgt). (19)
k=1 k=1 k=1

Then optimal coefficients a, and b, are searched by the Powell’s
method so that we obtain an optimal solution. Fig. 3 is obtained
by approximating up to the 2nd and Sth harmonics, respectively.
From Figs. 2 and 3, in a practical sense, we know that there is
very small difference between the exact optimal solutions and the
approximate optimal solutions even though the solutions are
approximated by a limited number of harmonic components.

115 rad
2.36 Sth
--- 2nd
1.57 4 TN
6,
87 4

Fig. 3. Approximate optimal solutions of Task 1

B. Multiple Nonhomotopic Extremal Solutions

Multiple extremal solutions can be obtained from the neces-
sary conditions (8) and periodic boundary conditions (5) for
given initial configuration ;. And there are many extremal solu-
tions depending on the initial joint velocity éo as well as the ini-
tial joint angle 8, Unfortunately, not all these extremal solutions
are optimal, nor is the optimal solution among them always
unique. Therefore it is natural to investigate how to select an
optimal solution among other extremal solutions for given initial
configuration. For this purpose, consider Task 2 which is R = 1
and C = 6 units. Let 9, be (-0.47124, 1.7875, -1.8734) radians
and we denote it as Initial-A. Fig. 4 shows initial configuration
for Task 2.

Fig. 4. Geometry of a three-link planar manipulator for Task 2

1

Resultant solutions based on the proposed method are
shown in Fig. 5. Solid lines in Fig. 5 show the optimal solution
by approximating up to 4th harmonics. For comparison, dotted
lines in Fig. 5 show one solution among many extrecmal solutions
which satisfy (8) and (5). The approximate optimal solution
shown in Fig. 5 does not change the arm configuration of the
manipulator. Link 3 has upper arm configuration with respect to
link 2 and also link 2 has lower arm configuration with respect 0
link 1 through the trajectories. On the other hand, an extrcmal
solution shown in Fig. 5 changes the arm configuration of the
manipulator. For example, link 3 has upper arm configuration
with respect to link 2 around the initial and final points of trajec-
tory. But link 3 has lower arm configuration with respect to link
2 in the middle of the trajectory. Similarly, 8; changes the arm
configuration.

-1.57 4 [} z ~

236 4

315 T T T T T T T T

Fig. 5. Solution of Task 2 at Initial-A
IV. Analysis of Solutions

A. FFT Analysis

In the previous section, we have made two assumptions
which provide the optimal solution. And it is valuable to show
the validity of the assumptions in this stage. We evenly sample
4096 data points of 84 trajectories of both the optimal solution
and the extremal solution shown in Fig. 2, respectively. Compar-
ing these two data by using FFT (Fast Fouricr Transfcim) as
shown in Table 1, the total power of the 8, of the optimal solu-
tion in Fig. 2 is smaller than that of the extremal solution. The
values obtained up to 2nd harmonics arc 0.365 and 5.867. respec-
tively. These data show the validity of the first assumption. We
know that the power of kth harmonics is computed from the FFT
data as akz + bkz and the magnitude of kth harmonics in Com-
plex Fourier Transform of real-valued data point is the square
root of the power of kth harmonics. Also the magnitude is the
kth coefficients of the Fouricr series in complex form. From
Table 1, we know that the optimal solution have monotonically
decreasing Fourier coefficients. On the contrary, the coefficients
of the extremal solution does not decrease monotonically. The
coefficients in complex form are 2.185, 1.045, 0.043, 0.043, and
0.073, respectively. These values show that the extremal solution
offend the second assumption.
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Harmonics | Optimal Solution | Exiremal Solution
1st real -0.3580 -1.2798
1st imaginary 0.4525 -1.7713
2nd real -0.0183 0.2585
2nd imaginary 0.1769 1.0124
3rd real 0.0132 -0.0398
3rd imaginary 0.0763 0.0156
4th real 0.0160 -0.0103
4th imaginary 0.0313 0.0418
5th real 0.0116 0.0184
Sth imaginary 0.0105 0.0703

Table 1. FFT Data of 053 for Task 1

B. Phase Plane Analysis

Fig. 6 shows that the solid lines are the projection of the set
of joint angles into the (8, 6,) phase plane that satisfies the
kinematic constraints (1) for some ¢. Since the manipulator has
one degree of redundancy, the set of such joint angles is a set of
dimension one greater than the dimension of the set x(z). In this
case, thc set can be described as a surface topologically
cquivalent to a deformed torus [7]. From Fig. 6, we can find two
solutions which one has a short trajectory in the torus and the
other has a long trajectory. In other words, it shows the
existence of multiple nonhomotopic extremal solutions depending
on the initial joint velocity 9 for given initial configuration.
Unfortunately, nonhomotopic extremal solutions can not be con-
tinuously transformed from one homotopy class to the other, as
pointed out by Martin er al {7]. It means that topological liftings
from the undcsirable class to the desirable class is necessary by
any means to obtain a globally optimal solution.
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Fig. 6. (85, 6,) phase trajectories of Task 2

As shown in Fig. 6, the short trajectory does not enclose
the hole of torus and remains in 2nd quadrants, this means that
the arm configuration is maintained while performing Task 2.
On the other hand, the long trajectory which traverses 2-3-4-1-2
quadrants in sequence cncloses the hole of torus and this means
that superfluous self-motions exist. Therefore, the methods based
on the Euler-Lagrange equations (necessary conditions) are not
sure to provide an optimal solution among nonhomotopic
extremal solutions in several homotopy classes, also unable to lift
trajectories in the undesirable class to the desirable class.

V. Conclusion

This paper proposed a numerical method of optimization
which has an integral cost criterion for kinematically redundant
manipulators. We predetermined the trajectories of redundant
joints in terms of the Nth partial sum of the Fourier series, which
lead to the solution in the desirable homotopy class. Then, the
optimal coefficients of the Fouricr series, which yicld the optimal
solution within the predetermined class, were searched by the
Powell’s method. Thercfore the optimal solution can be obtained
among extremal solutions. The proposed method was compared
with mathematically rigorous method [7]. Simulation results
showed that it was very practical and easy to implement. We
analyzed scveral solutions by the FFT and discussed somc
features of solutions on the phasc plane to investigate require-
ments of the optimal solution.
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