• Title/Summary/Keyword: a probe

Search Result 4,487, Processing Time 0.03 seconds

Effects of Position of Auxiliary Probe on Ground Resistance Measurement Using Fall-of-Potential Method

  • Gil, Hyoung-Jun;Kim, Dong-Woo;Kim, Dong-Ook;Lee, Ki-Yeon;Kim, Hyang-Kon
    • International Journal of Safety
    • /
    • v.7 no.2
    • /
    • pp.1-6
    • /
    • 2008
  • In this paper, the effects of the position and the angle of the potential probes on the measurements of the ground resistance using the fall-of-potential method are described and the testing techniques for minimizing the measuring errors are proposed. The fall-of-potential method is theoretically based on the potential and current measuring principle and the measuring error is primarily caused by the position and angle of auxiliary probes. In order to analyze the relative error in the measured value of the ground resistance due to the position of the potential probe, the ground resistance was measured for the case in which the distance of the current probe was fixed at 50[m] and the distance of the potential probe was located from 10[m] to 50[m]. Also, the potential probe was located in turn at $30[^{\circ}]$, $45[^{\circ}]$, $60[^{\circ}]$, $90[^{\circ}]$, and $180[^{\circ}]$. As a consequence, relative error decreased with increasing distance of the potential probe and decreasing angle between the current probe and potential probe. The results could help to determine the position of the potential probe during the ground resistance measurement.

Experimental Performance Evaluation of Optical Receiving Probe (광학식 수광 프로브의 실험적 성능평가)

  • Yang, Young-Joon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.3
    • /
    • pp.265-271
    • /
    • 2004
  • A light collecting probe named Multi-colored Integrated Receiving Optics (MICRO) is experimentally examined to verify its performance. For these purposes, the time-series signals of MICRO probe is compared with those of electro-static probe and light-guided probe by monitoring, for example. such as OH radical chemiluminescence. CH radical band and droplet Mie scattering In addition, the experiment was conducted by using laminar premixed Bunsen flame, turbulent premixed Bunsen flame and premixed spray flame, respectively. It was confirmed that the performance of MICRO probe was very useful and convenient to obtain the chemiluminescence signals from local regions in turbulent premixed Bunsen flame and premixed spray flame.

  • PDF

Assessment of Design and Mechanical Characteristics of MEMS Probe Tip with Fine Pitch (미세 피치를 갖는 MEMS 프로브 팁의 설계 및 기계적 특성 평가)

  • Ha, Seok-Jae;Kim, Dong-Woo;Shin, Bong-Cheol;Cho, Myeong-Woo;Han, Chung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1210-1215
    • /
    • 2010
  • The probe card are test modules which are to classify the good semiconductor chips and thin film before the packaging process. In the rapid growth a technology of semiconductor, the number of pads per unit area is increasing and pad arrays are becoming irregular. Therefore, the technology of probe card needs narrow width and lots of probe tip. In this paper, the probe tip based on the MEMS(Micro Electro Mechanical System)technology was developed a new MEMS probe tip for vertical probe card applications. For the structural designs of probe tip were performed to mechanical characteristics and structural analysis using FEM(Finite Element Method). Also, the contact force of MEMS probe tip compared with FEM results and experimental results. Finally, the MEMS probe card was developed a fine pitch smaller than $50{\mu}m$.

A Study on the measurement of Electron Energy Distribution Function in Ar plasma measured by the waveforms of Langmuir probe voltages (Langmuir 프로브 전압의 파형에 따른 아르곤 플라즈마의 전자에너지 분포함수 측정에 관한 연구)

  • Kim, Du-Hwan;Park, Jeong-Hu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.391-395
    • /
    • 1999
  • In this paper, we have obtained the Electron Energy Distribution Function(EEDF) in plasma by using two differentiators and investigated the EEDFs by sawtooth and triangle waveform voltages with the working pressures and the positions of single probe. It is found that as the working pressure is decreased, the EEDFs approach to theMaxwellian distribution independent of the waveforms of probe voltage. On the otherhand, as the position of probe is moved from the center of the plasma to its edge, the EEDF of sawtooth waveform probe voltage approaches to the Maxwellian distribution, but the EEDF of triangle waveform probe voltage deviates from the Maxwellian distribution.

  • PDF

DC Langmuir Probe for Measurement of Space Plasma: A Brief Review

  • Oyama, Koichiro
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.167-180
    • /
    • 2015
  • Herein, we discuss the in situ measurement of the electron temperature in the ionosphere/plasmasphere by means of DC Langmuir probes. Major instruments which have been reported are a conventional DC Langmuir probe, whose probe voltage is swept; a pulsed probe, which uses pulsed bias voltage; a rectification probe, which uses sinusoidal signal; and a resonance cone probe, which uses radio wave propagation. The content reviews past observations made with the instruments above. We also discuss technical factors that should be taken into account for reliable measurement, such as problems related to the contamination of electrodes and the satellite surface. Finally, we discuss research topics to be studied in the near future.

Analysis of a Circular Microstrip Patch Antenna with Dielectric Superstrate using the Rigorous Probe Feed Model (정확한 급전 구조를 고려한 레이돔 원형 패치 안테나 해석)

  • 최동혁;박경빈;박성욱
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.6
    • /
    • pp.859-867
    • /
    • 2000
  • In order to analyze the effect of a cover layer or radome for an antenna, the moment method is applied to the analysis of the circular microstrip patch antenna with dielectric superstrate fed by coaxial probe. The probe feed is modeled as a attachment mode method which can solve more exact analysis. In case of a ideal probe feed modeling, the probe self-impedance as well as the rapidly-varying patch current at the vicinity of the feed point was neglected. But a rigorous probe feed model which overcomes these deficiencies are developed, and used in the analysis of isolated circular patches. Measurements were performed to validate the numerical results. These are good agreement with each other.

  • PDF

Development of an Infrared Two-color Probe for Particle Cloud Temperature Measurement

  • Alshaikh Mohammed, Mohammed Ali;Kim, Ki Seong
    • Journal of ILASS-Korea
    • /
    • v.20 no.4
    • /
    • pp.230-235
    • /
    • 2015
  • The demands for reliable particle cloud temperature measurement exist in many process industries and scientific researches. Particle cloud temperature measurements depend on radiation thermometry at two or more color bands. In this study, we developed a sensitive, fast response and compact online infrared two-color probe to measure the temperature of a particle cloud in a phase of two field flow (solid-gas). The probe employs a detector contained two InGaAs photodiodes with different spectral responses in the same optical path, which allowed a compact probe design. The probe was designed to suit temperature measurements in harsh environments with the advantage of durability. The developed two-color probe is capable of detecting particle cloud temperature as low as $300^{\circ}C$, under dynamic conditions.

A Probe Detection based on Private Cloud using BlockChain (블록체인을 적용한 사설 클라우드 기반 침입시도탐지)

  • Lee, Seyul
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.2
    • /
    • pp.11-17
    • /
    • 2018
  • IDS/IPS and networked computer systems are playing an increasingly important role in our society. They have been the targets of a malicious attacks that actually turn into intrusions. That is why computer security has become an important concern for network administrators. Recently, various Detection/Prevention System schemes have been proposed based on various technologies. However, the techniques, which have been applied in many systems is useful for existing intrusion patterns on standard-only systems. Therefore, probe detection of private clouds using BlockChain has become a major security protection technology to detection potential attacks. In addition, BlockChain and Probe detection need to take into account the relationship between the various factors. We should develop a new probe detection technology that uses BlockChain to fine new pattern detection probes in cloud service security in the end. In this paper, we propose a probe detection using Fuzzy Cognitive Map(FCM) and Self Adaptive Module(SAM) based on service security using BlockChain technology.

Fabrication and Mechanical Properties of Carbon Nanotube Probe for Ultrasmall Force Measurement in Biological Application (생물학적 초미세력 검출을 위한 탄소나노튜브 프로브의 제작 및 기계적 특성 검출)

  • Kwon, Soon-Geun;Park, Hyo-Jun;Lee, Hyung-Woo;Kwak, Yoon-Keun;Kim, Soo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.140-147
    • /
    • 2008
  • In this study, a carbon nanotube probe (CNT probe) is proposed as a mechanical force transducer for the measurement of pico-Newton (pN) order force in biological applications. In order to measure nantube's displacement in the air or liquid environment, the fabrication of a CNT probe with tip-specific loading of fluorescent dyes is performed using tip- specific functionalization of the nanotube and chemical bonding between dyes and nanotube. Also, we experimentally investigated the mechanical properties of the CNT probe using electrostatic actuation and fluorescence microscope measurement. Using fluorescence measurement of the tip deflection according to the applied voltage, we optimized the bending stiffness of the CNT probe, therefore determined the spring constant of the CNT probe. The results show that the spring constant of CNT probes is as small as 1 pN/nm and CNT probes can be used to measure pN order force.

A Study on the Performance of Atomic Force Probe for Coordinate Measuring Machines (3차원 측정기를 위한 원자간력 프로브 성능 연구)

  • Jung, P.G.;Bae, G.H.;Hong, S.W.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.75-80
    • /
    • 2008
  • This paper presents an atomic force probe for triggering coordinate measuring machines(CMMs). A rigorous comparison is made between touch trigger probe and atomic force probe for CMMs. Typical CMMs(touch trigger probe based CMMs) often lead to some errors associated with object curvature and difference in triggering sensitivity. Their applicability is limited only to hard objects. The aim of this work is to develop a trigger sensor for CMMs using atomic force. In order to show the applicability of atomic force as a trigger sensor, a cylindrical shape is measured with a CMM and an atomic force microscope. Three different touch probe heads with different ball sizes are tested. The experiments show that smaller ball provides better results for curved objects. The experimental results also show that the performance of atomic force as a trigger sensor is about that of the smallest ball probe. In addition, experiments are also performed to measure soft objects. Finally, this paper suggests and verifies a trigger sensor using atomic force for CMMs.