• Title/Summary/Keyword: a model based control

Search Result 7,690, Processing Time 0.034 seconds

T-S Fuzzy Model-based Waypoints-Tracking Control of Underwater Vehicles (무인잠수정의 T-S 퍼지 모델기반 경로점 유도제어)

  • Kim, Do-Wan;Lee, Ho-Jae;Sur, Joo-No
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.6
    • /
    • pp.526-530
    • /
    • 2011
  • This paper presents a new fuzzy model-based design approach for waypoints-tracking control of nonlinear underwater vehicles (UUVs) on a horizontal plane. The waypoints-tracking control problem is converted into the stabilization one for the error model between the given nonlinear UUV and the waypoints. By using the sector nonlinearity, the error model is modeled in Takagi-Sugeno's form. We then derive stabilization conditions for the error model in the format of linear matrix inequality. A numerical simulation is provided to illustrate the effectiveness of the proposed methodology.

Attitude Control of Planar Space Robot based on Self-Organizing Data Mining Algorithm

  • Kim, Young-Woo;Matsuda, Ryousuke;Narikiyo, Tatsuo;Kim, Jong-Hae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.377-382
    • /
    • 2005
  • This paper presents a new method for the attitude control of planar space robots. In order to control highly constrained non-linear system such as a 3D space robot, the analytical formulation for the system with complex dynamics and effective control methodology based on the formulation, are not always obtainable. In the proposed method, correspondingly, a non-analytical but effective self-organizing modeling method for controlling a highly constrained system is proposed based on a polynomial data mining algorithm. In order to control the attitude of a planar space robot, it is well known to require inputs characterized by a special pattern in time series with a non-deterministic length. In order to correspond to this type of control paradigm, we adopt the Model Predictive Control (MPC) scheme where the length of the non-deterministic horizon is determined based on implementation cost and control performance. The optimal solution to finding the size of the input pattern is found by a solving two-stage programming problem.

  • PDF

A Study on the Construction of Dynamic Recursive Control Model through a Machine State Monitoring (기계상태 Monitoring을 통한 동적 Recursive 제어모형 구축에 관한 연구)

  • 윤상원;윤석환;신용백
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.17 no.30
    • /
    • pp.107-116
    • /
    • 1994
  • This paper formulates a dynamic monitoring and control model with a machine state by quality variations in a single lot production system. A monitoring model is based on estimate of machine state obtained using control theory. The model studied in this paper has a great advance from a point of view the combination between quality control (Sampling, Control Chart) and automatic control theory, and can be extended in a several ways.

  • PDF

Lyapunov-based Semi-active Control of Adaptive Base Isolation System employing Magnetorheological Elastomer base isolators

  • Chen, Xi;Li, Jianchun;Li, Yancheng;Gu, Xiaoyu
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.1077-1099
    • /
    • 2016
  • One of the main shortcomings in the current passive base isolation system is lack of adaptability. The recent research and development of a novel adaptive seismic isolator based on magnetorheological elastomer (MRE) material has created an opportunity to add adaptability to base isolation systems for civil structures. The new MRE based base isolator is able to significantly alter its shear modulus or lateral stiffness with the applied magnetic field or electric current, which makes it a competitive candidate to develop an adaptive base isolation system. This paper aims at exploring suitable control algorithms for such adaptive base isolation system by developing a close-loop semi-active control system for a building structure equipped with MRE base isolators. The MRE base isolator is simulated by a numerical model derived from experimental characterization based on the Bouc-Wen Model, which is able to describe the force-displacement response of the device accurately. The parameters of Bouc-Wen Model such as the stiffness and the damping coefficients are described as functions of the applied current. The state-space model is built by analyzing the dynamic property of the structure embedded with MRE base isolators. A Lyapunov-based controller is designed to adaptively vary the current applied to MRE base isolator to suppress the quake-induced vibrations. The proposed control method is applied to a widely used benchmark base-isolated structure by numerical simulation. The performance of the adaptive base isolation system was evaluated through comparison with optimal passive base isolation system and a passive base isolation system with optimized base shear. It is concluded that the adaptive base isolation system with proposed Lyapunov-based semi-active control surpasses the performance of other two passive systems in protecting the civil structures under seismic events.

A Universal Model for Policy-Based Access Control-enabled Ubiquitous Computing

  • Jing Yixin;Kim, Jin-Hyung;Jeong, Dong-Won
    • Journal of Information Processing Systems
    • /
    • v.2 no.1
    • /
    • pp.28-33
    • /
    • 2006
  • The initial research of Task Computing in the ubiquitous computing (UbiComp) environment revealed the need for access control of services. Context-awareness of service requests in ubiquitous computing necessitates a well-designed model to enable effective and adaptive invocation. However, nowadays little work is being undertaken on service access control under the UbiComp environment, which makes the exposed service suffer from the problem of ill-use. One of the research focuses is how to handle the access to the resources over the network. Policy-Based Access Control is an access control method. It adopts a security policy to evaluate requests for resources but has a light-weight combination of the resources. Motivated by the problem above, we propose a universal model and an algorithm to enhance service access control in UbiComp. We detail the architecture of the model and present the access control implementation.

Electricity Price Forecasting in Ontario Electricity Market Using Wavelet Transform in Artificial Neural Network Based Model

  • Aggarwal, Sanjeev Kumar;Saini, Lalit Mohan;Kumar, Ashwani
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.639-650
    • /
    • 2008
  • Electricity price forecasting has become an integral part of power system operation and control. In this paper, a wavelet transform (WT) based neural network (NN) model to forecast price profile in a deregulated electricity market has been presented. The historical price data has been decomposed into wavelet domain constitutive sub series using WT and then combined with the other time domain variables to form the set of input variables for the proposed forecasting model. The behavior of the wavelet domain constitutive series has been studied based on statistical analysis. It has been observed that forecasting accuracy can be improved by the use of WT in a forecasting model. Multi-scale analysis from one to seven levels of decomposition has been performed and the empirical evidence suggests that accuracy improvement is highest at third level of decomposition. Forecasting performance of the proposed model has been compared with (i) a heuristic technique, (ii) a simulation model used by Ontario's Independent Electricity System Operator (IESO), (iii) a Multiple Linear Regression (MLR) model, (iv) NN model, (v) Auto Regressive Integrated Moving Average (ARIMA) model, (vi) Dynamic Regression (DR) model, and (vii) Transfer Function (TF) model. Forecasting results show that the performance of the proposed WT based NN model is satisfactory and it can be used by the participants to respond properly as it predicts price before closing of window for submission of initial bids.

A Study on the Control Model Identification and H(sub)$\infty$ Controller Design for Trandem Cold Mills

  • Lee, Man-Hyung;Chang, Yu-Shin;Kim, In-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.847-858
    • /
    • 2001
  • This paper considers the control model identification and H(sub)$\infty$ controller design for a tandem cold mill (TCM). In order to improve the performance of the existing automatic gauge control (AGC) system based on the Taylor linearized model of the TCM, a new mathematical model that can complement the Taylor linearized model is constructed by using the N4SID algorithm based on subspace method and the least squares algorithm based on ARX model. It is shown that the identified model had dynamic characteristics of the TCM than the existing Taylor linearized model. The H(sub)$\infty$ controller is designed to have robust stability to the system parameters variation, disturbance attenuation and robust tracking capability to the set-up value of strip thickness. The H(sub)$\infty$ servo problem is formulated and it is solved by using LMI (linear matrix inequality) techniques. Simulation results demonstrate the usefulness and applicability of the proposed H(sub)$\infty$ controller.

  • PDF

Bilinear mode predictive control methods for chemical processes

  • Yeo, Yeong-Koo;Oh, Sea Cheon;Williams, Dennis C.
    • ICROS
    • /
    • v.2 no.1
    • /
    • pp.59-71
    • /
    • 1996
  • In the last decade, the model predictive control methods have enjoyed many industrial applications with successful results. Although the general predictive control methods for nonlinear chemical processes are not yet formulated, the promising features of the model predictive control methods attract attentions of many researchers who are involved with difficult but important nonlinear process control problems. Recently, the class of bilinear model has been introduced as an useful tool for examining many nonlinear phenomena. Since their structural properties are similar to those of linear models, it is not difficult to develop a robust adaptive model predictive control method based on bilinear model. We expect that the model predictive control method based on bilinear model will expand its region in the world of nonlinear systems.

  • PDF

Extended Role Based Access Control Model (확장된 역할기반 접근통제 모델)

  • 김학범;홍기융;김동규
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.9 no.1
    • /
    • pp.47-56
    • /
    • 1999
  • RBAC(Role Based Access Control) is an access control method based on the user's roles and it provides more flexibility and applicability on the various computer and network security fields than DAC(Discretionary Access Control) or MAC(Mandatory Access Control). In this paper, we newly propose ERBAC$_{0}$(Extended RBAC$_{0}$) model by considering subject's and object's roles additionally to REAC$_{0}$ model which is firstly proposed by Ravi S. Sandhu as a base model. The proposed ERBAC$_{0}$ model provides finer grained access control on the base of subject and object level than RBAC$_{0}$ model.

Model-based Predictive Control Approach to Continuous Process based on Iterative Learning Concept

  • Chin, In-Sik;Cho, Moon-Ki;Lee, Jay-H;Lee, Kwang-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.41.1-41
    • /
    • 2001
  • Since the advanced control technique such as model predictive control has been introduced to industrial plant, there have been many progresses in the process control. As a way to improve the control performance, the on-line process optimizer was integrated with the advance controller. In this study, a control technique which improves the control. As the number of changes by the optimizer is increased, the control performance of the proposed algorithm is improved. Its control performance is shown via an numerical example.

  • PDF