28 International Journal of Information Processing Systems, Vol.2, No.1, March 2006

A Universal Model for Policy-Based Access Control-enabled
Ubiquitous Computing

Yixin Jing*, Jinhyung Kim*, and Dongwon Jeong**

Abstract: The initial research of Task Computing in the ubiquitous computing (UbiComp)
environment revealed the need for access control of services. Context-awareness of service requests in
ubiquitous computing necessitates a well-designed model to enable effective and adaptive invocation.
However, nowadays little work is being undertaken on service access control under the UbiComp
environment, which makes the exposed service suffer from the problem of ill-use. One of the research
focuses is how to handle the access to the resources over the network. Policy-Based Access Control is
an access control method. It adopts a security policy to evaluate requests for resources but has a light-
weight combination of the resources. Motivated by the problem above, we propose a universal model
and an algorithm to enhance service access control in UbiComp. We detail the architecture of the

model and present the access control implementation.

Keywords: Access control, Ubiquitous computing, Task computing, Context-awareness

1. Introduction

The beginning of the merging of web techniques and the
ubiquitous environment could be traced back to 2003.
Many efforts have gone into this field aiming to deal with
the new demand that has arisen along with ubiquitous and
pervasive computing. Application in such an “anytime,
everywhere” environment is beyond the traditional
program presence pattern and has become embedded in
daily life without drawing attention. A most important
topic in the ubiquitous environment is how to capture and
process contextual or situational information in dynamic
service requesting. Service is becoming a standard
interface over the internet. A service is a function that is
well-defined, self-contained, and does not depend on the
context or state of other services. The technology of the
Web Services [1] is the most likely connection technology
of service-oriented architectures. Web services essentially
use XML to create a robust connection. To receive a
service from a service provider, a service consumer has to
send a request message to invoke the exposed service
interface. In this case, the service provider returns a
response message to the service consumer. The request and
subsequent response connections are defined in some way
that is understandable to both sides. A service provider can
also be a service consumer.

In the ubiquitous computing environment, services are
supposed to be the most popular approach establishing the
connection among people, devices, and applications.

Manuscript received February 2, 2006; accepted March 3, 2006.

Corresponding Author: Dongwon Jeong

* Dept. of Computer Science and Engineering, Korea University, Seoul,
Korea ({jing, koolmania}@software.korea.ac.kr)

** Dept. of Informatics and Statistics, Kunsan National University,
Kunsan, Korea (djeong@kunsan.ac.kr)

Services published on a Web server can therefore be
discovered by the interested service consumer. Through a
discovery mechanism such as UPnP [2], the service
consumer can call for a service by transferring the
corresponding parameters. However, a service means a
hardware/software resource in a given subnet. To consume
resources the service consumer needs to meet certain
pre-conditions. The process to define or limit the access
right of the service consumer to the service is thus called
‘service access control’. Services are changing as they may
be merged, composed, split or moved to other usage
scenarios. So the access control to a service needs to be
sufficiently adaptive. As introduced in [3, 4], the traditional
subject-based access control solutions are inadequate to
rule access to resources in cases of frequent user/device
mobility and context changes. Instead, the rule based on
the properties of a subject, which include the subject’s
natural properties and contextual properties, is more
suitable to meet the dynamic nature of ubiquitous
computing [5, 6]. In this paper, we propose a new model to
enhance the existing service access control methods. The
proposed model is based on a service policy-based access
control method rather than the traditional subject-based
access control.

The outline of the paper is as follows. In Section 2, we
introduce the related work. Section 3 describes the
universal model in detail. Section 4 provides an
implementation of the access control based on the
proposed model. A conclusion of the paper and the outlook
for future work is presented in Section 5.

2. Related Works and Motivation

Much effort has been applied to the issues relating to

Copyright (© 2006 KIPS (ISSN 1738-8899)

Yixin Jing, Jinhyung Kim, and Dongwon Jeong 29

services in ubiquitous computing, such as “The Task
Computing Environment” (TCE) [7, 8, 9], Ubiquitous
Context-based Security Middleware (UbiCOSM) [6],
KAoS [10, 11] and Ontology-enabled Services-Oriented
Architecture for UbiComp (OASA) [12].

Nevertheless, these service access control models do not
address, or scarcely address, the problem of enabling users
to obtain the desired services. The only issue related to
assisting users to obtain a desired service is addressed in
the access control model of Task Computing. The Task
Computing access control mechanism exploits the
delegation supported by the Rei [13] to help a user reach
the required service. The weakness here is that support
alone for delegation is not enough. Even the user
successfully gets the delegation from somewhere, and
he/she still encounters the problem when a service
demands other contextual information which the user
cannot provide. The access control model of UbiCOSM
utilized the context description to authorize rights to users.
However, a merely context-centered policy limits the
ability of the mobile user to input the service parameters,
which results in a policy enforcement process that is totally
dependent on contextual information but does not consider
the users’ preferences.

In a word, a service-rich environment as well as access
control introduces many challenges to users wishing to use
the service. A service execution depends on two factors:
one concerns the user’s personal status, such as the user’s
identification or preferences; the other concerns the
contextual information of the users. As for the former
factor, the identification and position could be acquired
through the handset of the user; his/her preference could be
collected when he/she configures the service input
parameters. To collect the latter factor, which is not
acknowledged by the non-expert user, an easy service
access mechanism is needed to offer help. To resolve this
problem, we propose a universal model within which the
hardware and the service are connected to provide more
precise service access control by offering richer contextual
information.

3. The Universal Model

The universal model for ubiquitous computing is
designed for the capability of managing hardware/software,
computational/non-computational resources in the
ubiquitous environment, and consequently realizing service
access control. The structure of the universal model is
composed of different interrelated classes as introduced
below.

3.1 Service Class
Service class is the key portion of the universal model

where the other classes are designed to facilitate service
creation, modification, and management. (See Def. 1):

Definition 1 Service: A service consists of a service name,
service description, and sets of input/output
parameters:
service = <name, description, {input para}, {output
para}>,
where each service instance could be identified by
service.name.

In Service, four properties are provided. Service name is
used to identify the service instance. Therefore in the same
name space, service name is distinct. Service description is
a human readable plain text to help people understand the
functionality of the service instance. Input parameter/
output parameter collection depicts the parameter inputting
and outputting of the service. Input/output parameter might
be the value of the primitive data type, an object, or the
collection of the both.

3.2 Entity Class

Entity class (see Def. 2) intends to define the sources in
ubiquitous environment and represent them along with
exposed services. An instance of Entity class might be a
computational device (for example an automatically washing
machine or a server running Web Service). In all cases, the
computational device can independently execute an automatic
process without cooperation with other devices. This atomic
process, defined as Action (see Def. 3) of the Entity.

Definition 2 Entity: An entity consists of an entity name
and a set of Actions:
entity = <name, {action}>,
where each action instance could be identified by
action.name.

Definition 3 Action: An action is composed of an action.
name and a set of parameters inherited from
Service:
action = <name, {input_para}, {output_para} >,
where
input_para/output_para =<para_name, para_type>;
and in either {input_para} or {output para},
each para_name must be distinct.

An Action is a set of state transitions which can last for
anything from a few seconds to several hours depending on
the desired goal. The Action exploits the resources of the
device where the process is being executed without
interacting with other surrounding entities. Action could
not be divided into smaller granularity. The Action is the
sub-class of Service, therefore it might have input and
output parameters which respectively decide how action
would be launched and determine the effect of the action.
Each parameter has its data type.

Fig. 1 illustrates an example of the Action. The action
“washing clothes” has some necessary parameters, such as
the “minutes” spent on washing and drying. In this case,
the type of parameter is an integer. Another possible input

30 A Universal Model for Policy-Based Access Control-enabled Ubiquitous Computing

parameter is an integer which decides how many times this
action should be executed.

Action instance:
name: washing_clothes
input_para:
washing_minutes, integer
drying_minutes, integer
execution_times, integer
output_para:
null

Fig.1. Example of action instance
3.3 Task Class

With the support of Action, the more complicated task
could be made up by compositing those action instances.
We abstract this type of task as Task class, which derives
from Service (see Def. 4).

The Task class is a lightweight composition of action
instances. The object property Task.mode clarifies the
mode by which the action instances are composed. The
collection {action_inst} depicts the action instances
involved in a task. Each involved action instance and the
name of its related entity comprise each element of the
collection.

Definition 4 Task: A task is composed of a name, and a
sequence of actions:
task = <name, {action_inst}, mode>,
where
action_inst = <entity.name, action>;
mode = sequent/concurrent

3.4 Request Class and Policy Class

A highlight of pervasive computing is that 2 computing
module is seamlessly embedded in various kinds of
surrounding facilities. These entities can be aware of a
change in the environment and offer adaptive service.
These services are triggered by different things, such as
information on the location change of a user, a time
schedule, or a sudden occurrence. We wrap up these trigger
events in terms of Request class (see Def. 5).

Definition 5 Request: A request is composed of a
requested service.name and a set of request_para:

request = <name, service.name, {input _para},
{context para}>,
where

context_para =< para_name, para_type >;
and each context para.para_name must be distinct.

A request has its own name to enable itself to be
identified. The service name denotes which service
instance this request is going to access. Input parameter
collection carries the parameter values that are necessary to
execute a service. The context parameter collection takes

the contextual information when this request is composed.
To prevent service abuse, a specially designed filter is
needed to evaluate requests to the service, and
consequently realize the access control to a service. Class
Policy is used to accomplish this evaluation (see Def. 6). A
policy approach is widely used in access control for
network security [14, 15]. The properties of policy include
a distinct name as an identifier and a service name
denoting with which service instance this policy is
associated. The collection of clauses defines the principle
to evaluate a request. A clause is a boolean combination of
expressions for a context parameter of the request. If every
context parameter satisfies the corresponding clause, the
request is qualified to access the service. A context
awareness access control can capture contextual
information along with the request and examine them one
by one with the conditions defined in the policy. (See Fig.
2). From Fig. 2, we can tell that request930@korea.ac.kr
could not access service01 because the time value was not
in the range of that which is enforced in the policy,
although the temperature value did fulfill the requirement.

Definition 6 Policy: A policy has the following structure,
policy=<name, service.name, {clause}>,

1) clause = expression {O expression}, where O
is a logical operator (such as AND, OR);

2) expression=<para namedval>, where para_
name denotes the name of the parameter; val is
the value of the parameter; and O is any
relational comparison operator (such as >, >).

Request instance:
name: request930@korea.ac.kr
service.name: service0l

Policy instance:
name: policy01
service.name: service0l

input_para: Null clauses:

context_para: clause 1:
time=14:00 time>16:00 AND time<I8:00
temperature=26 clause 2:

temperature >25

a) Request instance b) Policy instance

Fig. 2. The example of a request-policy pair

The overview of the universal model is outlined as in
Fig. 3.

Request Service]
Iname: String

Palicy

name: String ame: Sting

service_name: String description: String

service_name: String

input_paras: input_para [] input_paras: input_para {]

clauses: clause [}

context_paras: context_para [J output_paras: output_para [|

[|

- Action Task
Entity - -
| name: String name: String
name: String X
i input_paras: input_para [| [action_instances: action_inst [|
actions: Action []

output_paras: output_para [] | |mode: sequent/concurrent
1

1

Action_inst
entity_name: String

action: Action

Fig. 3. Overview of the universal model

Yixin Jing, Jinhyung Kim, and Dongwon Jeong 31

4. Implementation and Discussion

This section describes the system architecture and
request evaluation algorithms for implementation, and
discussion of the proposed model.

4.1 Architecture and Key Algorithms for Implementation

The system architecture is composed of two sides. The
first concerns the Service Management Environment as
shown in Fig. 4. The Entity Management module registers
the entity information with the local repository. The
registered content includes the entity name, type,
manufactory and, most importantly, the action that the
entity provides. According to the registered action
information, the Service Management can translate the
action into the standard Web Service interface and publish
it in the Service Engine waiting to be discovered. In the
same way, the Task Management module could integrate
the action to form a more complicated behavior. The
integrated task can also be mapped to the Web Service by
the Service Management module. Therefore, the
conceptual service is connected to the concrete entity
resource, which can not only complete the service
execution but also provide more contextual information
through the sensor entity as long as the corresponding
services are invoked.

action
[Entity

integration Task
Management Management J

) e

service mapping

Service) service publish "
(_Management J] -

Service
Engine

Fig. 4. Service Management Environment Architecture

The other side of the system is the access control
environment framework, which allows the universal
model-based service request and service policy to be
specified and enforced through an application. The primary
system design is depicted in Fig. 5. An access control
environment is a middle ware residing between service
request submission and service execution. The main
module of the environment consists of a Policy Admi-
nistration Point (PAP), a Policy Decision Point (PDP), and
a Response Handler (RH). The interaction between the
access control environment and the other module outside
occurs through three interfaces: the PDP-Service Request
Generator (SRG), RH-SRG, and RH-Service Engine (SE).

SRG has two functionalities: the first serves to connect
some sensors to listen and collect the real-time information;
the other is to receive a service invoking signal from

Access Control Enwronment
Deny/indeterminate

request response Response pehnit 0
LN
Handler O

S g

Sensor Service Service
2) Request Engine
Generator
Mobile User

Repository

Fig. 5. Access Control Environment Architecture

the mobile user and transfer it to a system understandable
format. In the ubiquitous computing environment, a mobile
user can discover his/her available service via UPnP. The
user can compose a simple service request and send it to
SRG in order to acquire the service. SRG is responsible for
expressing this simple request in a PDP understandable
format and may collect more contextual information,
which cannot be provided by the mobile user, through the
first functionality.

Procedure serviceAccess(req){
get service_name from req;
get service policy of service name;
evaluateResult =evaluateReq(reqID, service_policy name);
if (evaluateResult is “violate”) return;
else if (evaluateResult is “qualified) {
executeService(service_name);
return;
}
else if (evaluateResult is “insufficient”){
new_req =requestMoreCondition(insufficient clauseList);
serviceAccess(new_req);
H
}
a)

Procedure string evaluateReq(req, service policy name){
req_condition[]=getConditionfromReq(reqID);
pol_condition[]=getClauses(service_policy_name);

for(i=0,i<req_condition[].length,i++){
for(j=0,j<pol_condition[].length,j++){
if(req_condition[i].para_name
==pol_condition[j].para_name){
result =
check(req_condition[i].req_para, pol_condition[j]);
if (result = = false) return “violate”
}
H
}

for (each element ¢ in pol condition[] but not in req_condition[]){
insufficient clause_list.add(g);

if (insufficient_clause_list.length>0) return “insufficient”;
else return “qualified”;

}

b)

Fig. 6. Algorithm for Service Request Evaluation

32 A Universal Model for Policy-Based Access Control-enabled Ubiquitous Computing

With the support of PAP, PDP can look up the policy
associated with the given target service in the request.
Afterwards, PDP is responsible for evaluating the request
against the policy, which results in a response message.
Response Handler is in charge of analyzing the response
message to determine the next step. The response message
might carry one of the three results of the request evaluation,
which are “qualified”, “violate” or “insufficient”. If the
request satisfies all of the clauses in the policy, Response
Handler can notify the Service Engine to invoke the
corresponding service. Otherwise, the service cannot be
executed. In the event that any clause of the policy is
violated, “violate” is returned to SRG and consequently the
service request process is terminated. If the contextual
parameters in the request fulfill the clauses of the policy
but at least one clause of the policy cannot find the
corresponding parameter in the request, “insufficient”
along with the missing parameter are returned to SRG.

The aforementioned access control environment requires
an algorithm to evaluate the request upon the policy. For
this reason, we suggest a primitive algorithm to implement
the PDP. The algorithm is divided into two procedures:
serviceAccess (Fig. 6 a) and evaluateReq (Fig. 6 b). The
former is responsible for receiving the incoming request
and calls upon the latter to check the request against task
policy. If the request does not violate the policy but lacks
certain contextual information, evaluateReq can return the
unsatisfied conditions.

4.2 Evaluation and Discussion

To evaluate the key algorithm, we implement a JSP
application to deal with the access authority of the
incoming requests. Fig. 7 illustrates the processing steps
with an example. In Fig. 7, time, the contextual parameter
of the request in Fig. 2, is removed. As a result, the request
evaluation informs of this missing contextual parameter.

6] evalaaticalesalt. jrp - Wicrosadt L... o 0 5
Y &9Q RO B IRQ ¥

request.name=requestd30@korea.ac.kr
service.name=service01

Evaluation Result
serviceAc(;ess() — @ Service Rase
servicedt

req_condition| |={current temperature=30} | foiuatian Result
Insufficient
pol_condition[J={time>16 AND time<18,
current temperature>25)

[Parameter nase
g
- Yo

E;M”r“ T z

Kissing Contestunl Informaiton List

evaluateReq()

Fig. 7. Service Request Evaluation Process

In the above example, we did not deny the service
request for the missing parameter but returned the
parameter name. Consequently, the request can try to
acquire the missing parameter according to the evaluation
result. Compared to other access control model, we can
summarize as shown in Table 1.

Table 1. Qualitative comparison

Comparative | Access Control | UbiCOSM KAoS OASA Our model
ltems of TCE

Policy Rei language ROF KAoS Rei or Policy

KAoS clause
array

Entity Resource | Yes No Ne Yes Yes

Management

Service Support Not support | Not support Support Support

Composition

Return missing No No No No Yes

contextual

parameter

As shown in Table 1, the policy representation strategy
varies in terms of the language. As for the entity resource,
access control of the TCE, OASA as well as our universal
model provide the management to a different degree. The
same three approaches also provide the service
composition. From the perspective of the missing
parameter of the service request, only the suggested
universal model can return the missing parameter, while
the other approach will deny the request without any
further information.

5. Conclusion

In this paper, we proposed a universal model to achieve
adaptive service access control in the ubiquitous
environment. The universal model is orienting the service.
In the model the hardware and software are recognized as
the entity, and each entity has its exposed action published
as a service. Action could consist of a more complicated
task according to a given mode. Task is present as a service
too. To evaluate the request to a service, the system
architecture along with the suggested algorithm 1is
exploited to manage a policy-based access control. The
definition of the universal model is mapped to the
algorithm to implement a context-awareness request/
response.

As the access control in the ubiquitous computing
environment remains at a beginning stage, a lot of the area
is far from mature. In a future study, a more sophisticated
system will be developed, while further research into
security and efficiency is also envisaged.

References

[1] W3C, Web Services Activity, http://www.w3.org/
2002/ws/.

[2] UPnP Forum, http://www.upnp.org/.

[3] L. Kagal, T. Finin, A. Joshi, “A Policy Based
Approach to Security for the Semantic Web”,
Proceedings. of 2nd International Semantic Web
Conference (ISWC2003), Sanibel Island, Florida,
USA, Oct., 2003.

[4] A. Corradi, N. Dulay, R. Montanari, C. Stefanelli,
“Policy-driven Management of Mobile Agent Systems”,

Yixin Jing, Jinhyung Kim, and Dongwon Jeong 33

Proceedings Of Policy 2001, Springer- Verlag, LNCS
1995, Bristol, Jan., 2001.

[5] Ryusuke Masoka, Mohinder Chopra, Yannis Labrow,
etc., “Policy-based Access Control for Task Com-
puting Using Rei”, Proceedings of the Policy Mana-
gement for the Web Workshop, pp. 37~43, May,
2005.

[6] Antonio Corradi, Rebecca Montanari, Daniela Tibaldi,
“Context-based Access Control for Ubiquitous
Service Provisioning”, Proceedings of the 28"
Annuval International Computer Software and
Applications Conference (COMPSAC), 2004.

[71 R. Masuoka, B. Parsia and Y. Labrou. “Task
computing-the semantic web meets pervasive
computing”, Proceedings of 2nd International Semantic
Web Conference 2003 (ISWC), Florida, USA, pp.
866~881, Oct., 2003.

[8] R. Masuoka, Y. Labrou, B. Parsia and E. Sirin,
“Ontology-enabled pervasive computing applications”,
IEEE Intelligent Systems, vol.18, no.5, pp. 68~72,
2003.

[91 Z. Song, Y. Labrou, R. Masuoka, “Dynamic service
discovery and management in task computing”,
Proceedings of 1st Annual International Conference
on Mobile and Ubiquitous Systems: Networking and
Sevice (MobiQuitous), Boston, Massachusetts, USA,
pp. 310~318, Aug., 2004.

[10] A. Uszok, J. M.Bradshaw, “KAoS policies for web
services”, W3C Workshop on Constraints and
Capabilities for Web Services, Redwood Shores, CA,
USA, Oct., 2004.

[111 A. Uszok, J. M. Bradshaw, R. Jeffers, and M.
Johnson, “Policy and contract management for
semantic web services”, Proceedings of AAAI Spring
Symposium on Semantic Web Services., California,
USA, Mar., 2004.

[12] Q. Ni, M. Sloman, “An ontology-enabled service
oriented architecture for pervasive computing”,
Proceedings of International Conference on Information
Technology: Coding and Computing (ITCC), Las
Vegas, Nevada, USA, pp.797~798, Apr., 2005.

[13] L. Kagal, “Rei : a policy language for the Me-Centric
project”, HP Labs Technical Report, 2002.

[14] Rafac Bhatti, Elisa Bertino and Arif Ghafoor, “A
Trust-based Context-Aware Access Control Model for
Web-Services”, Proceedings of the IEEE Inter-
national Conference on Web Services (ICWS), 2004.

[15] Rafae Bhatti, Elisa Bertino and Arif Ghafoor.
“XML-Based Specification for Web Services
Document Security”, IEEE Computer, vol.37, no.4,
pp-41~49, 2004.

Yixin Jing

He received his BS and MS degrees in
Computer Science from Wuhan Univ.
(China) in 2001 and 2004 respectively.
He has been a Ph.D. student in Korea
University since 2005. His research
interests include Metadata Registry,
Modeling Technology, Software Engine-
ering, Semantic Web, Data Manage-
ment, Access Control, and Message Management in
Ubiquitous Computing.

Jinhyung Kim

He received his MS degree in Computer
Science from Korea University in 2005,
He has been a h.D. student in Korea
University since 2006. His research
interests include XML Technology,
Relational and Object- Oriented DBMS,
Semantic Web, Metadata Management,
and Ubiquitous Computing.

Dongwon Jeong

He received a BS degree in Computer
Science from Kunsan National Uni-
versity, Korea, in 1997, an MS in
Computer Science from Chungbuk
National University, Korea, in 1999,
and a Ph.D. in Computer Science from
Korea University, Korea, in 2004. He
worked as a full-time instructor from
1999 to 2000 in the Advanced Institute of Information
Technology, Korea. From 2001 to 2005, he worked as a
Senior Research Engineer in the Lime Media Technology
Laboratory. He was a Research Assistant Professor in the
Research Institute of Information and Communication
Technology, Korea University, from 2004 to 2005. From
2002 to the present he has been a committee member of the
Telecommunications Technology Association, Korea. 2005.
He was a Visiting Research Scholar (Post-Doc.) at the
School of Information Sciences & Technology, Pennsylvania
State University, PA, USA. He was on the Program
Committee of SERA2005 (International Conference on
Software Engineering Research, Management & Applica-
tions). Now, he is a Professor in the Department of
Informatics and Statistics, Kunsan National University,
Korea, and is on the Program Committee of EUC2006 and
UIC2006. He is one of the Publicity Co-Chairs of
SERA2006. His research interests include metadata
registry-based integration and application, mobile agent
security, XML-to-RDB conversion and hybrid security,
ubiquitous computing and semantic maintenance, and
ontology conversion.

