• Title/Summary/Keyword: a linear theory

Search Result 2,014, Processing Time 0.027 seconds

New Non-linear Modelling for Vibration Analysis of Straight Pipe Conveying Fluid (유체 유동을 갖는 직선관의 진동 해석을 위해 새로운 비선형 모델링)

  • Lee, Soo-Il;Chung, Jin-Tai;Im, Hyung-Bin
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.372-377
    • /
    • 2001
  • A new non-linear of a straight pipe conveying fluid is presented for vibration analysis when the pipe is fixed at both ends. Using the Euler-Bernoulli beam theory and the non-linear Lagrange strain theory, from the extended Hamilton's principle are derived the coupled non-linear equations of motion for the longitudinal and transverse displacements. These equations of motion for are discretized by using the Galerkin method. After the discretized equations are linearized in the neighbourhood of the equilibrium position, the natural frequencies are computed from the linearized equations. On the other hand, the time histories for the displacements are also obtained by applying the $generalized-{\alpha}$ time integration method to the non-linear discretized equations. The validity of the new modeling is provided by comparing results from the proposed non-linear equations with those from the equations proposed by $Pa{\ddot{i}}dousis$.

  • PDF

FE modeling for geometrically nonlinear analysis of laminated plates using a new plate theory

  • Bhaskar, Dhiraj P.;Thakur, Ajaykumar G.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.5
    • /
    • pp.409-426
    • /
    • 2019
  • The aim of the present work is to study the nonlinear behavior of the laminated composite plates under transverse sinusoidal loading using a new inverse trigonometric shear deformation theory, where geometric nonlinearity in the Von-Karman sense is taken into account. In the present theory, in-plane displacements use an inverse trigonometric shape function to account the effect of transverse shear deformation. The theory satisfies the traction free boundary conditions and violates the need of shear correction factor. The governing equations of equilibrium and boundary conditions associated with present theory are obtained by using the principle of minimum potential energy. These governing equations are solved by eight nodded serendipity element having five degree of freedom per node. A square laminated composite plate is considered for the geometrically linear and nonlinear formulation. The numerical results are obtained for central deflections, in-plane stresses and transverse shear stresses. Finite element Codes are developed using MATLAB. The present results are compared with previously published results. It is concluded that the geometrically linear and nonlinear response of laminated composite plates predicted by using the present inverse trigonometric shape function is in excellent agreement with previously published results.

Nonlinear modelling and analysis of thin piezoelectric plates: Buckling and post-buckling behaviour

  • Krommer, Michael;Vetyukova, Yury;Staudigl, Elisabeth
    • Smart Structures and Systems
    • /
    • v.18 no.1
    • /
    • pp.155-181
    • /
    • 2016
  • In the present paper we discuss the stability and the post-buckling behaviour of thin piezoelastic plates. The first part of the paper is concerned with the modelling of such plates. We discuss the constitutive modelling, starting with the three-dimensional constitutive relations within Voigt's linearized theory of piezoelasticity. Assuming a plane state of stress and a linear distribution of the strains with respect to the thickness of the thin plate, two-dimensional constitutive relations are obtained. The specific form of the linear thickness distribution of the strain is first derived within a fully geometrically nonlinear formulation, for which a Finite Element implementation is introduced. Then, a simplified theory based on the von Karman and Tsien kinematic assumption and the Berger approximation is introduced for simply supported plates with polygonal planform. The governing equations of this theory are solved using a Galerkin procedure and cast into a non-dimensional formulation. In the second part of the paper we discuss the stability and the post-buckling behaviour for single term and multi term solutions of the non-dimensional equations. Finally, numerical results are presented using the Finite Element implementation for the fully geometrically nonlinear theory. The results from the simplified von Karman and Tsien theory are then verified by a comparison with the numerical solutions.

BLOCK ITERATIVE METHODS FOR FUZZY LINEAR SYSTEMS

  • Wang, Ke;Zheng, Bing
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.119-136
    • /
    • 2007
  • Block Jacobi and Gauss-Seidel iterative methods are studied for solving $n{\times}n$ fuzzy linear systems. A new splitting method is considered as well. These methods are accompanied with some convergence theorems. Numerical examples are presented to illustrate the theory.

DIVISIBLE SUBSPACES OF LINEAR OPERATORS ON BANACH SPACES

  • Hyuk Han
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.19-26
    • /
    • 2024
  • In this paper, we investigate the properties related to algebraic spectral subspaces and divisible subspaces of linear operators on a Banach space. In addition, using the concept of topological divisior of zero of a Banach algebra, we prove that the only closed divisible subspace of a bounded linear operator on a Banach space is trivial. We also give an example of a bounded linear operator on a Banach space with non-trivial divisible subspaces.

Recent Progress of Freak Wave Prediction

  • Mori, Nobuhito;Janssen, Peter A.E.M.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.127-134
    • /
    • 2006
  • Based on a weakly non-Gaussian theory the occurrence probability of freak waves is formulated in terms of the number of waves in a time series and the surface elevation kurtosis. Finite kurtosis gives rise to a significant enhancement of freak wave generation in comparison with the linear narrow banded wave theory. For fixed number of waves, the estimated amplification ratio of freak wave occurrence due to the deviation from the Gaussian theory is 50% - 300%. The results of the theory are compared with laboratory and field data.

  • PDF

Hypothesis Testing for New Scores in a Linear Model

  • Park, Young-Hun
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.1007-1015
    • /
    • 2003
  • In this paper we introduced a new score generating function for the rank dispersion function in a general linear model. Based on the new score function, we derived the null asymptotic theory of the rank-based hypothesis testing in a linear model. In essence we showed that several rank test statistics, which are primarily focused on our new score generating function and new dispersion function, are mainly distribution free and asymptotically converges to a chi-square distribution.

A Linear Reservoir Model with Kslman Filter in River Basin (Kalman Filter 이론에 의한 하천유역의 선형저수지 모델)

  • 이영화
    • Journal of Environmental Science International
    • /
    • v.3 no.4
    • /
    • pp.349-356
    • /
    • 1994
  • The purpose of this study is to develop a linear reservoir model with Kalman filter using Kalman filter theory which removes a physical uncertainty of :ainfall-runoff process. A linear reservoir model, which is the basic model of Kalman filter, is used to calculate runoff from rainfall in river basin. A linear reservoir model with Kalman filter is composed of a state-space model using a system model and a observation model. The state-vector of system model in linear. The average value of the ordinate of IUH for a linear reservoir model with Kalman filter is used as the initial value of state-vector. A .linear reservoir model with Kalman filter shows better results than those by linear reserevoir model, and decreases a physical uncertainty of rainfall-runoff process in river basin.

  • PDF

AN APPROACH FOR SOLVING NONLINEAR PROGRAMMING PROBLEMS

  • Basirzadeh, H.;Kamyad, A.V.;Effati, S.
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.717-730
    • /
    • 2002
  • In this paper we use measure theory to solve a wide range of the nonlinear programming problems. First, we transform a nonlinear programming problem to a classical optimal control problem with no restriction on states and controls. The new problem is modified into one consisting of the minimization of a special linear functional over a set of Radon measures; then we obtain an optimal measure corresponding to functional problem which is then approximated by a finite combination of atomic measures and the problem converted approximately to a finite-dimensional linear programming. Then by the solution of the linear programming problem we obtain the approximate optimal control and then, by the solution of the latter problem we obtain an approximate solution for the original problem. Furthermore, we obtain the path from the initial point to the admissible solution.

A NEW METHOD FOR SOLVING THE NONLINEAR SECOND-ORDER BOUNDARY VALUE DIFFERENTIAL EQUATIONS

  • Effati, S.;Kamyad, A.V.;Farahi, M.H.
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.183-193
    • /
    • 2000
  • In this paper we use measure theory to solve a wide range of second-order boundary value ordinary differential equations. First, we transform the problem to a first order system of ordinary differential equations(ODE's)and then define an optimization problem related to it. The new problem in modified into one consisting of the minimization of a linear functional over a set of Radon measures; the optimal measure is then approximated by a finite combination of atomic measures and the problem converted approximatly to a finite-dimensional linear programming problem. The solution to this problem is used to construct the approximate solution of the original problem. Finally we get the error functional E(we define in this paper) for the approximate solution of the ODE's problem.