• Title/Summary/Keyword: a euler angle

Search Result 120, Processing Time 0.026 seconds

Numerical Investigation of Mother Plane Interference Effect on the Supersonic Air-launched Rocket (초음속 공중발사 로켓의 모선 간섭현상 수치적 연구)

  • Kim, Young-Shin;Lee, Jae-Woo;Byun, Yung-Hwan;Park, Jun-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.17-26
    • /
    • 2005
  • Numerical investigation has been made on the aerodynamic characteristics of supersonic air-launching rocket, as a new concept launching mechanism. Parametric study on the variations of launching velocity, incident angle and mounting location of the rocket has been performed using three dimensional Euler equations. Influential factors at separating stage of the rocket were extracted through comprehensive analyses, and, the response surface models were constructed for those factors. From the study, the aerodynamic behavior of the air-launching rocket at supersonic speed and useful guidelines for the optimal mounting location of the rocket have been obtained.

Generalized Kinematic Analysis for the Motion of 3-D Linkages using Symbolic Equation (기호방정식을 이용한 3차원 연쇄기구 운동해석의 일반화)

  • 김호룡
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.102-109
    • /
    • 1986
  • Based on the Hartenberg-Denavit symbolic equation, which is one of equations for the kinematic analysis of three dimensional (3-D) linkage, a generalized kinematic motion equation is derived utilizing Euler angles and employing the coordinates transformation. The derived equation can feasibly be used for the motion analysis of any type of 3-D linkages as well as 2-D ones. In order to simulate the general motion of 3-D linkgages on digital computer, the generalized equation is programmed through the process of numerical analysis after converting the equation to the type of Newton-Raphson formula and denoting it in matrix form. The feasibility of theoretically derived equation is experimentally proved by comparing the results from the computer with those from experimental setup of three differrent but generally empolyed 3-D linkages.

A Study on Active SAR Satellite Maneuver Time Reduction through Sequential Rotation (연속회전을 통한 능동 합성개구레이더위성 기동시간 단축 연구)

  • Son, Jun-Won;Park, Young-Woong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.7
    • /
    • pp.648-656
    • /
    • 2015
  • Active SAR satellite's main maneuver is roll axis maneuver to change SAR antenna direction. In addition, yaw steering is required to minimize the doppler centroid variation. Thus, it is resonable to assign the torque/momentum capacity mostly to roll axis and then yaw axis. In this case, the pitch axis shows low agility performance. However, due to orbit maintenance, large angle maneuver about pitch axis is sometimes required. In this paper, we study the pitch axis maneuver time reduction through sequential rotation about roll and yaw axis. Since these two axes have high agility performance than pitch axis, maneuver time reduction is possible when large angle rotation about pitch axis is required.

Comparison of Newton's and Euler's Algorithm in a Compound Pendulum (복합진자 모형의 뉴튼.오일러 알고리즘 비교)

  • Hah, Chong-Ku
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.1-7
    • /
    • 2006
  • The Primary type of swinging motion in human movement is that which is characteristic of a pendulum. The two types of pendulums are identified as simple and compound. A simple pendulum consist of a small body suspended by a relatively long cord. Its total mass is contained within the bob. The cord is not considered to have mass. A compound pendulum, on the other hand, is any pendulum such as the human body swinging by hands from a horizontal bar. Therefore a compound pendulum depicts important motions that are harmonic, periodic, and oscillatory. In this paper one discusses and compares two algorithms of Newton's method(F = m a) and Euler's method (M = $I{\times}{\alpha}$) in compound pendulum. Through exercise model such as human body with weight(m = 50 kg), body length(L = 1.5m), and center of gravity ($L_c$ = 0.4119L) from proximal end swinging by hands from a horizontal bar, one finds kinematic variables(angle displacement / velocity / acceleration), and simulates kinematic variables by changing body lengths and body mass. BSP by Clauser et al.(1969) & Chandler et al.(1975) is used to find moment of inertia of the compound pendulum. The radius of gyration about center of gravity (CoG) is $k_c\;=\;K_c{\times}L$ (단, k= radius of gyration, K= radius of gyration /segment length), and then moment of inertia about center of gravity(CoG) becomes $I_c\;=\;m\;k_c^2$. Finally, moment of inertia about Z-axis by parallel theorem becomes $I_o\;=\;I_c\;+\;m\;k^2$. The two-order ordinary differential equations of models are solved by ND function of numeric analysis method in Mathematica5.1. The results are as follows; First, The complexity of Newton's method is much more complex than that of Euler's method Second, one could be find kinematic variables according to changing body lengths(L = 1.3 / 1.7 m) and periods are increased by body length increment(L = 1.3 / 1.5 / 1.7 m). Third, one could be find that periods are not changing by means of changing mass(m = 50 / 55 / 60 kg). Conclusively, one is intended to meditate the possibility of applying a compound pendulum to sports(balling, golf, gymnastics and so on) necessary swinging motions. Further improvements to the study could be to apply Euler's method to real motions and one would be able to develop the simulator.

Simulation model for Francis and Reversible Pump Turbines

  • Nielsen, Torbjorn K.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.3
    • /
    • pp.169-182
    • /
    • 2015
  • When simulating the dynamic behaviour of a hydro power plant, it is essential to have a good representation of the turbine behaviour. The pressure transients in the system occurs because the flow changes, which the turbine defines. The flow through the turbine is a function of the pressure, the speed of rotation and the wicket gate opening and is, most often described in a performance diagram or Hill diagram. In the Hill diagram, the efficiency is drawn like contour lines, hence the name. A turbines Hill diagram is obtained by performance tests on scaled model in a laboratory. However, system dynamic simulations have to be performed in the early stage of a project, before the turbine manufacturer has been chosen and the Hill diagram is known. Therefore one have to rely on diagrams for a turbine with similar speed number. The Hill diagram is drawn through measured points, so for using the diagram in a simulation program, one have to iterate in the diagram based on curve fitting of the measured points. This paper describes an alternative method. By means of the Euler turbine equation, it is possible to set up two differential equations which represents the turbine performance with good enough accuracy for the dynamic simulations. The only input is the turbine's main geometry, the runner blade in- and outlet angle and the guide vane angle at best efficiency point of operation (BEP). In the paper, simulated turbine characteristics for a high head Francis turbine, and for a reversible pump turbine are compared with laboratory measured characteristics.

Development of 3D simulator for biped robot (이족 보행 로보트를 위한 3차원 모의 실험기의 개발)

  • 김민수;이보희;김진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.928-931
    • /
    • 1996
  • It is necessary to develop the simulator for the test of stability and torque before the walking experiment of biped robot, because a robot may be damaged in an actual experiment. This thesis deals with the development of three-dimensional simulator for improving efficiency and safety during development and experimentation. The simulator is composed of three parts-solving dynamics, rendering pictures and communicating with the robot. In the first part, the D-H parameter and parameter of links can be loaded from the file and edited in the program. The results are obtained by using the Newton-Euler method and are stored in the file. Through the above process, the proper length of link and driving force can be found by using simulator before designing the robot. The second part is organized so that the user can easily see a specific value or a portion he wants by setting viewing parameters interactively. A robot is also shown as a shaded rendering picture in this part. In the last part, the simulator sends each desired angle of joints to the robot controller and each real angle of joints is taken from the controller and passed to the second part. The safety of the experiment is improved by driving the robot after checking whether the robot can be actuatable or not and whether the ZMP is located within the sole of the foot or not for a specific gait. The state of the robot can be easily grasped by showing the shaded rendering picture which displays the position of the ZMP, the driving force and the shape of robot.

  • PDF

A Study on the Dynamic Characteristics of a Composite Beam with a Transverse Open Crack (크랙이 존재하는 복합재료 보의 동적 특성 연구)

  • 하태완;송오섭
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.1019-1028
    • /
    • 1999
  • Free vibration characteristics of cantilevered laminated composite beams with a transverse non0propagating open carck are investigated. In the present analysis a special ply-angle distribution referred to as asymmetric stiffness configuration inducing the elastic coupling between chord-wise bending and extension is considered. The open crack is modelled as an equivalent rotational spring whose spring constant is calculated on the basis of fracture mechanics of composite material structures. Governing equations of a composite beam with a open crack are derived via Hamilton's Principle and Timoshenko beam theory encompassing transverse shear and rotary inertia effect. the effects of various parameters such as the ply angle, fiber volume fraction, crack depth, crack position and transverse shear on the free vibration characteristics of the beam with a crack is highlighted. The numerical results show that the natural frequencies obtained from Timoshenko beam theory are always lower than those from Euler beam theory. The presence of intrinsic cracks in anisotropic composite beams modifies the flexibility and in turn free vibration characteristics of the structures. It is revealed that non-destructive crack detection is possible by analyzing the free vibration responses of a cracked beam.

  • PDF

Dynamic Speed Control of a Unicycle Robot (외바퀴 로봇의 동적 속도 제어)

  • Han, In-Woo;Hwang, Jong-Myung;Han, Seong-Ik;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • This paper presents a new control algorithm for dynamic control of a unicycle robot. The unicycle robot motion consists of a pitch that is controlled by an in-wheel motor and a roll that is controlled by a reaction wheel pendulum. The unicycle robot doesn't have any actuator for a yaw axis control, which makes the derivation of the dynamics relatively simple. The Euler-Lagrange equation is applied to derive the dynamic equations of the unicycle robot to implement the dynamic speed control of the unicycle robot. To achieve the real time speed control of the unicycle robot, the sliding mode control and LQ regulator are utilized to guarantee the stability while maintaining the desired speed tracking performance. In the roll controller, the sigmoid-function based sliding mode controller has been adopted to minimize the chattering by the switching function. The LQR controller has been implemented for the pitch control to drive the unicycle robot to follow the desired velocity trajectory in real time using the state variables of pitch angle, angular velocity, angle and angular velocity of the wheel. The control performance of the two control systems form a single dynamic model has been demonstrated by the real experiments.

A Study on Robot Hand Gripper Design and Robust Control for Assembly and Disassembly Task of Machine Parts (기계 부품의 조립분해 작업을 위한 로봇핸드 그리퍼 설계 및 견실제어에 관한 연구)

  • Jeong, Gyu-Hyun;Shin, Gi-Su;Noh, Yeon-Guk;Moon, Byeong-Gap;Yoon, Byeong-Seok;Bae, Ho-Young;Kim, Min-Seong;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.4
    • /
    • pp.299-305
    • /
    • 2017
  • This study proposes a new technique to design and control of robot hand gripper for assembling and disassembling of a machine parts. The motion equation describing dynamics of the manipulators and object together with geometric constraint is formulated by Lagrange-Euler's equation. And the problems of controlling both the grasping force and the rotation angle of the grasped object under the constraints are analyzed. The effect of geometric constraints and a method of computer simulation for overall system is verified. Finally, it is illustrated that even in case of there exists a sensory feedback from sensing data of the rotational angle of the object to command inputs control of joint and this feedback connection from sensing data to control grasping of machinery parts.

Design and Analysis of a Controlled Diffusion Aerofoil Section for an Axial Compressor Stator and Effect of Incidence Angle and Mach No. on Performance of CDA

  • Salunke, Nilesh P.;Channiwala, S.A.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.1
    • /
    • pp.20-28
    • /
    • 2010
  • This paper deals with the Design and Analysis of a Controlled Diffusion Aerofoil (CDA) Blade Section for an Axial Compressor Stator and Effect of incidence angle and Mach No. on Performance of CDA. CD blade section has been designed at Axial Flow Compressor Research Lab, Propulsion Division of National Aerospace Laboratories (NAL), Bangalore, as per geometric procedure specified in the U.S. patent (4). The CFD analysis has been performed by a 2-D Euler code (Denton's code), which gives surface Mach No. distribution on the profiles. Boundary layer computations were performed by a 2-D boundary layer code (NALSOF0801) available in the SOFFTS library of NAL. The effect of variation of Mach no. was performed using fluent. The surface Mach no. distribution on the CD profile clearly indicates lower peak Mach no. than MCA profile. Further, boundary layer parameters on CD aerofoil at respective incidences have lower values than corresponding MCA blade profile. Total pressure loss on CD aerofoil for the same incidence range is lower than MCA blade profile.