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Abstract 

When simulating the dynamic behaviour of a hydro power plant, it is essential to have a good representation of the turbine 
behaviour. The pressure transients in the system occurs because the flow changes, which the turbine defines. The flow through the 
turbine is a function of the pressure, the speed of rotation and the wicket gate opening and is, most often described in a 
performance diagram or Hill diagram. In the Hill diagram, the efficiency is drawn like contour lines, hence the name. A turbines 
Hill diagram is obtained by performance tests on scaled model in a laboratory. 

 
However, system dynamic simulations have to be performed in the early stage of a project, before the turbine manufacturer has 

been chosen and the Hill diagram is known. Therefore one have to rely on diagrams for a turbine with similar speed number. The 
Hill diagram is drawn through measured points, so for using the diagram in a simulation program, one have to iterate in the 
diagram based on curve fitting of the measured points. 

 
This paper describes an alternative method. By means of the Euler turbine equation, it is possible to set up two differential 

equations which represents the turbine performance with good enough accuracy for the dynamic simulations. The only input is the 
turbine’s main geometry, the runner blade in- and outlet angle and the guide vane angle at best efficiency point of operation (BEP). 
In the paper, simulated turbine characteristics for a high head Francis turbine, and for a reversible pump turbine are compared with 
laboratory measured characteristics.  
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1. Introduction 
The Euler turbine equation describes how the hydraulic power is transformed to mechanical rotational power to the turbine 

shaft. The transformation is due to the reaction force as a consequence of the velocity vectors changing both in direction and 
multitude. Seen from the hydraulic systems side, the turbine is a perfect throttle, throttling the whole head and subtracting all the 
hydraulic energy. In the differential equation describing the flow the turbine represents a hydraulic loss.  

 
In a hydro system with reaction turbines, the water is a continuum from upper reservoir through the turbine and to the lower 

reservoir. Therefore, the turbine speed of rotation effects the flow and vice versa. In high head turbines, when the speed of rotation 
increases the flow decreases. There is a so-called pumping effect due to the centripetal force. The mentioned throttling effect is 
therefore a function of the speed of rotation.  

 
A Francis turbine has a fixed geometry deigned to be optimal in one point of operation only, the so-called Best Efficiency 

Point, BEP. At BEP, the transformation of hydraulic power to rotational mechanic power is perfect, if not for friction loss. 
Disregarding the friction loss, at this point the hydraulic efficiency is 1.0. In the differential equation for angular speed of rotation, 
the Euler turbine equation defines the torque. 

 

2. Euler’s turbine equation 
The turbine runner’s task is to transform the available hydraulic power, proportional to the multiple of flow and head to 

mechanical rotating power. Euler’s turbine equation states that the transformation is dependent on the change of velocity vectors 
from the inlet, index 1, to the outlet, index 2, of the runner as the Euler equation 2.1 describes: 
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1 1 2 2( )h u ugQH Q u c u c Th ρ ρ ω= − =         (2.1) 
 
where u1 and u2 is the turbine runner’s peripheral speed at the inlet and the outlet respectively, and cu1 and cu2 is the water’s 

absolute velocity’s component in the peripheral speed’s direction. The peripheral speeds, u1 and u2 are proportional to the inlet and 
outlet diameters respectively, the proportional constant being the angular speed of rotation ω. In Fig. 1, the velocity vectors, or the 
velocity triangles are shown.  

 
The hydraulic efficiency is a measure of how good the runner is capable of transforming the hydraulic power to mechanical 

rotational power. The hydraulic efficiency pr. definition: 
 

1 1 2 2( )u u
h

u c u cT
gHQ gH

ωωh
ρ

−
= =          (2.2) 

 
For a perfectly designed runner, assuming no friction loss, the hydraulic efficiency is 1.0, but only at one particular operational 

point, the so-called Best Efficiency Point, BEP. At BEP, the runner angles are perfect for transforming the hydraulic power to 
rotating mechanical power. For a Francis turbine, the runner blades are fixed. For a particular runner, the ideal velocity vectors 
will only apply for a given head, flow, speed of rotation and wicket gate position.  

  

     
 
Fig. 1 Main geometry and velocity triangles at inlet and outlet of a Francis runner, At BEP, angle α1 corresponds with the 

guide vane angle, angle β1 corresponds with the runner blade inlet angle and angle β2 with the outlet runner blade angle. 
 

 
According to the Euler turbine equation, the head difference between inlet and outlet, marked 1) and 2) in Fig. 1 is given by: 
 

1 2 1 1 2 2( ) u ug H H u c u c− = −          (2.3) 
 
Applying the Cosines sentence on the inlet velocity triangle, see Figure 1, gives: 
 

2 2 2 2 2
1 1 1 1 1 1 1 1 1 12 cos 2 uv u c u c u c u cα= + − = + −        (2.4) 

2 2 2
1 1 1 1 1

1 1 1
2 2 2uu c c v u= − +          (2.5) 

 
And accordingly for the outlet triangle: 
 

2 2 2
2 2 2 2 2

1 1 1
2 2 2uu c c v u= − +          (2.6) 

 
Implemented in equation 2.3 gives: 
 

2 2 2 2 2
1 2 1 2 1 2

1 1( ) ( ) ( )
2 2

g H H c c v v sω− = − − − +        (2.7) 

 
Where: 

2
2 2

1 2
1

1 (1 )
8

D
s D

D
= −           (2.8) 
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The turbine represents a throttle in the system as it transforms the hydraulic power to rotational mechanical power. The 

throttling is also a function of the angular speed of rotation, which is defined by the turbine geometry, eq 2.8. When s is positive, 
i.e. D1>D2, the flow will decrease and if s is negative, i.e. D1<D2, the flow will increase as the speed of rotation increases as 
illustrated in Fig. 2. 

 
 

    
Fig. 2 Illustration of how the flow, Q, changes with the speed of rotation, n for Francis turbines of high and low specific speed. 
 
 
Introducing the opening degree of the turbine, κ, defined by: 
 

2

2
R

R

Q
gH

Q
gH

κ =            (2.9) 

 
where the subscript R denotes the design point of the turbine, and solving the equation with respect to the head H gives: 
 

2

R
R

QH H
Qκ

 
=  

 
          (2.10) 

 
which in the design point is the head difference between runner inlet and outlet as expressed in equation 2.7, hence: 
 

2
2 2 2 2 2

1 2 1 2
1 1( ) ( )
2 2R R R R R R

R

QgH c c v v s
Q

ω
κ

 
= − − − + 

 
      (2.11) 

or:   
2

2 2 2 2 2
1 2 1 2

1 1( ) ( )
2 2R R R R R R

R

Qc c v v gH s
Q

ω
κ

 
− − − = − 

 
      (2.12) 

 
Implemented in equation 2.7 gives: 
 

2
2 2

1 2( ) ( )R R
R

Qg H H gH s
Q

ω ω
κ

 
− = + − 

 
       (2.13)  

 

3. The differential equations for turbine and system 

The turbine implemented in a system, as illustrated in Fig. 3, can be represented by two differential equations, the momentum 
equation and the torque equation: 
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h t
dQI gH gH
dt

= −           (3.1) 

p G
dI T T
dt
ω

= −           (3.2) 

where TG is the generator torque.           

Ih is the hydraulic inertia trough the turbine, and Ip is the polar moment of inertia of the rotating masses (generator). 

 

 

           

 

 

Fig. 3 Hydropower plant 

 
Globally, the turbine is defined from the inlet flange of spiral casing to the outlet of the draft tube. As the flow is entering the 

spiral casing and goes through the wicket gate, before entering the turbine runner, some of the available head has been 
transformed to velocity energy. The flow is also given a swirl, and through the runner the swirl will be transformed to torque. The 
runner outlet is designed so that the swirl is zero before entering the draft tube. It is, however, only the extraction of the power 
through the turbine runner that matters in the momentum equation, hence: 

 

 
2

2 2
1 2( ) ( )t R R

R

QgH g H H gH s
Q

ω ω
κ

 
= − = + − 

 
       (3.3) 

The torque, T, is defined by the Euler equation: 

1 1 2 2( )u uT Q r c r cr= −           (3.4) 

Examining the velocity diagram, the equation may be transformed to: 

2
1 1 1 2 2 1 1 2( cos cot sin )zT Q r c r A c rr α β α ω= + −        (3.5) 

Examining the equation, the first two terms in the parenthesis are functions of the absolute velocity and the geometrical 
properties. With reference to the deduction in Appendix A the equation has the form:  

2
2( )sT Q t rr ω= −           (3.6) 

Where sQtρ is the start torque, i.e. at ω = 0. 
 
 

4. Dimensionless equations 

The equations can be made dimensionless by implementing the dimensionless properties defined as follows: Flow: q = Q/QR, 
Head: h = H/HR and angular speed of rotation: ω =ω/ωR, Dimensionless starting torque: ms=ts/tR where ts is the specific torque 
when the angular speed of rotation, ω = 0, and tR is the rated specific starting torque. The dimensionless equations are: 

Momentum:     
2

2( 1)wt
dq qT h
dt

σ w
κ

 = − − − 
 

       (4.1)  

T 

T 

H 
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Torque:  
1 ( )a s G

dT q m
dt h
ω ψω h= − −       (4.2) 

In eq 4.1, the turbine head is: 

2
2( 1)t

qh σ ω
κ

 = − − 
 

           (4.3) 

hG in eq 4,2 is the generator efficiency, and the turbine efficiency is: 

1 ( )h sm
h

h ψω ω= −             (4.4) 

Twt and Ta are time constants representing the hydraulic and rotating inertia, respectively, see eq 4.1 and 4.2 

The throttling dependency of angular speed of rotation given by s (eq.2.8) is made dimensionless by:  

    R

R

s
gH
ωs =         (4.5) 

The torque equation, eq. 3.5, seems to be a rather complicated expression, but by making the equation dimensionless, see 
Appendix A, the dimensionless starting torque ms, will be: 

1 1 1(cos tan sin )s R
qm ξ aaa 
κ

= +       (4.6) 

BEP is when α1=α1R and q=κ=1.0, hence
1cossR

R

m ξ
α

=  

When the equation is made dimensionless, two dimensionless figures, ψ and ξ, come forth. These are, for a particular turbine, 
constants defined at BEP as follows: 

2
2R

R

u
gH

ψ =   1 1R R

R

u c
gH

ξ =         (4.7) 

5. The efficiency 

The hydraulic (Euler) efficiency is pr definition Tω/(ρgQH), hence in dimension less term: 

( ) 1 ( )s
h s

q m m
qh h

ψω ω
h ψω ω

−
= = −

 
          (5.1) 

Examining the hydraulic efficiency for q=0 and ω =1, 1 1uc c→ and 2 2uc u→ hence:  

2
1 1 2

1 ( )h u c u
gH

h = −           (5.2) 

With rated head and κ=1, the hydraulic efficiency hh ξ ψ= − and not equal to zero. This is in contradiction to all practical 
experience. It is therefore reasonable to formulate an incipient loss, or rather an incipient efficiency according to the equation 
below: 

21 ( 1)i qη = − −           (5.3) 

This is a parabola where the peak point is at (1,1), i.e. at q=qR=1, the incipient efficiency is 1.0 assuming no incipient loss at 
rated flow, and at q=0, the efficiency is zero, see Fig. 4, left figure. 
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Fig. 4 Incipient efficiency as a function of flow 

The hydraulic efficiency will then be: 
1 ( )h i sm
h

h h ψω ω= −           (5.4) 

For ω =1, i.e. the synchronous speed of rotation, Fig. 4, wright, shows the result. 

Using geometry defined term for σ, (see eq. 4.5) implies that the runner’s main geometry is according to the Euler equation, 
which is not always the case, besides; it is a question of how to define the main dimension of the runner, which is actual a 3D 
geometry. Assuming that the turbine has BEP at q=1, h=1, and ω =1, and that the derivative dh/dω of equation 4.4 is equal to 
zero at BEP, the relationships between σ ,ψ, ξ and hhR are: 

hR

hR

h ψ
σ

h ψ
−

=
+

           (5.5) 

1( )coshR Rξ h ψ α= +           (5.6) 

This is derived in Appendix B 

The turbine characteristics and efficiency may now be simulated by the two differential equations (4.1) and (4.2), starting with 
ω = 0, then setting hG <0. (if hG=0, it will end at run-away-speed.) 

 
Simulations of the turbine characteristics of a high head Francis turbine with this model, which is strictly in accordance with 

the Euler equation, the peak efficiency at BEP will be hhR = 1, assuming no friction loss.  

 
Fig. 5 Flow vs speed of rotation and efficiency vs rotational speed according to the Euler equation. 

 
 
For high head Francis turbines, and especially for RPTs, the speed-flow characteristics are in fact much steeper. This indicates 

that it is not only the diameter ratio that decides the turbine characteristics. 
 
The flow dependency of the speed of rotation is often referred to as “pumping effect” because as the speed increases, the 

turbine will act like a pump, increasing the throttling through the turbine, and even turn the flow direction if the speed of rotation 
is high enough. 

 
There are reasons to model high head Francis turbines, and especially RPTs in accordance with the Euler turbine equation, but 

 

174 



with an added term based on the pump equation in order to include the enhanced “pumping effect” due to the geometry of the 
runner.  

 

6. The pump equation 
A centrifugal pump and a Francis turbine is in fact the same kind of machine, both obeying the Euler equation. Assuming 

rotation free inlet, the theoretical head of a pump may be expressed by the Euler equation: 
 
   

2 2 2 2 2
2 2 2

( ) ( )
tanth m

QgH u u c u u
B Dπ β∞ = − = −        (6.1) 

 
(In pump literature, Hth∞ is “the theoretical head with infinite number of blades”, which means that the fluid follows the runner 

blades with no slip.) 
 
At a given speed of rotation, i.e. for a given u2, The QH-characteristics will be ascending if the outlet angle β2>90ο and 

descending if β2<90ο, i.e. forward or backward leant runner blades as illustrated in Fig. 6. 
 
 

Q

∞thH
β2 = 90o

β2 > 90o

β2 < 90o

Q

∞thH
β2 = 90o

β2 > 90o

β2 < 90o

 
Fig. 6 Theoretical QH-characteristics of centrifugal pumps, dependent on the outlet angle β2. 

 
In order to get stabile pump characteristics, centrifugal pumps must have backward leant runner blades. This is also the case 

for a RPT, when running as a pump. However, when the speed of rotation changes direction in turbine mode of operation, the 
pump effect will be caused by forward lent blades. 

 
In equation 6.1 it is assumed no rotation at the pump inlet. For this case, there is rotation at the inlet because of the guide vanes. 

This rotation term is included in equation 6.2 below. 
 

2 1
2 2 1 1 2 2 1 1

2 1

( ) ( )
tan tan

m m
th u u

c cgH u c u c u u u u
β β∞ = − = − − −      (6.2) 

 
In general cm = Q/Area, and examining the velocity diagrams:  
 

2 2 1 1
2 2 1 1

( ) ( )
tan tanth
Q QgH u u u u

A Aβ β∞ = − − −       (6.3)  

 
The pumping effect in a Francis turbine is caused by that the turbine will behave in the same way as a centrifugal pump. The 

water flows through the turbine from upper to lower reservoir and will give rotational power on the turbine shaft according to the 
Euler turbine equation. At the same time, the pump equation will also apply, but with the direction of the rotation as in turbine 
mode of operation. Seen from the pump equation, the flow will be negative until the flow really turns, which will happen if one 
increases the speed of rotation sufficiently. As pump regarded, this will be a pump with forward lent blades, i.e. with increasing 
characteristics, see Fig. 6.  

 
Using notations common for turbine mode of operation, the pump equation will be: 
    

1 1 2 2
1 1 2 2

( ) ( )
tan tanp
Q QgH u u u u

A Aβ β
= − − −       (6.4) 
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Introducing the angular speed of rotation, in general 
2
Du ω= : 

 

2 1 2

1 1 2 2

2 ( )
2 tan 2 tanp p
D DQ QgH s

A A
ω ω

β β
= − −       (6.5) 

 
Where sp is a geometry dependent parameter formally defined by the inlet and outlet diameters in the same way as in eq. 2.8.   
 
Implementing the pumping head to the turbine equation eq. 3.3: 
 

2
2 2 2( ) 2t n n p q

n

QgH gH s s R Q
Q

ω ω ω ω
κ

 
= + − + + 

 
      (6.6) 

 
where: 
 

22

2

11

1

tan
1

2tan
1

2 ββ A
D

A
DRq −=       (6.7) 

 
Again, it is convenient to make the equation dimensionless by dividing the equation with gHR and introducing h=H/HR, 

q=Q/QR, and ω~ =ω/ωn: 
 

2 2 2
2

1 ( 1) 2t p qh q r qσ ω σ ω ω
κ

= + − + −         (6.8) 

 
where: 
 

q R R
q

R

R Q
r

gH
ω

=  

 
To obtain the design requirement that h=hR when q=1, κ=1, h=1 and ω=1, σp = ½ σ. 
 
Implementing the pump term in the eq. 4.1 and 4.2 gives: 
 

Momentum:     2 2
2 ( 1)wt q

q qdqT h r q
dt

σ w σww
κ

= − − − − +       (6.9) 

Torque:  
1 ( )a s G

dT q m
dt h
ω ψω h= − −       (6.10) 

 
The absolute sign on q has to be there so that the equations are correct when the flow, q, turns to negative flow in 4th quadrant.. 
The same goes for the equations for a Francis turbine, eq 4.1 and 4.2. 
  

7. QED – NED Characteristics 
 
The definition of the unit speed, NED and the unit flow, QED, respectively is: 

 

2
 and QED ED

nD QN
gH D gH

= =         (7.1) 

 
In these definitions, H is the actual head difference over the turbine which is the head defined by the Euler equation, see equations 
(4.3) for a turbine with Euler geometry and equation (6.8) for a turbine which differs from Euler geometry typical for a RPT. 
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8. Simulations and verifications 
 
8.1 High head Francis turbine 
 
Main dimensions of the model runner: 
 
 D1 = 630 mm   α1R= 10o 
 D2 = 349 mm   β1 = 77.4o 
 B1 = 60 mm   β2 = 69.6o 
  
The geometry is according to the Euler turbine equation and is simulated with the turbine model strictly in accordance with 

Euler turbine equations, eq (4.1) and (4.2).   
  
 
Figure 7 shows simulated turbine characteristics, NED – QED, and efficiency, Eta. In Fig. 7, fare wright, simulated and 

measured characteristics are compared.  
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Fig. 7 Simulated turbine characteristics and efficiency where hhR=0.96. Comparison between measured and simulated 
characteristics are shown on the figure on the fare end left 

 
 
8.2 Reversible pump turbine 
 
Main dimensions of the model runner: 
 
 D1 = 630 mm   α1R= 10o 
 D2 = 349 mm   β1 = 11o 
 B1 = 59.6 mm   β2 = 12.8o 
  
The main dimension differs from the Euler geometry in order to gain sufficient pumping power and the characteristics must be 

modelled with the correction of the Euler equations described by the equations (6.9) and (6.10). Figure 8 shows simulated turbine 
characteristics, NED – QED, compared with measured characteristics, as well as the simulated relative efficiency for the same 
wicket gate openings. 
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Fig. 8 Simulated and measured characteristics of Reversible Pump Turbine. Simulated efficiency at the left for 
different opening degrees (hR = 1). 

 

9. Conclusion 
 
The model seems to represent the turbine characteristics with sufficient accuracy to be use for system dynamic simulations. It 

is convenient that the turbine is represented by ordinary differential equations, which can be solved incorporated in the equation 
system for the whole water power system directly. In the described model, it is assumed no frictional losses. It may easily be 
included in the equations, a tuning towards measured turbine characteristics and efficiency is then necessary. 
 
Figure 9a shows a simulation of the performance of a RPT installed in the Water Power Laboratory as it goes from nominal speed 
to run-away speed of rotation. In the laboratory it is possible to apply a negative torque, forcing the RPT to turn the flow direction. 
When the flow turns, of course it gives a negative head, which means that the RPT acts as a pump, see Fig. 9b 
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Fig. 9 Simulation of RPT performance as it goes from nominal speed to run-away-speed of rotation (9a). In Fig. 9b) a 
negative torque is applied to make the RPT turn the flow direction.  
 

In a laboratory, the characteristics are measured by altering the speed of rotation and measure head, flow and torque. This is 
repeated for different wicket gate positions. This is not what happens in a hydropower plant. Here the head is given by the 
reservoir levels. The turbine gives a torque on the shaft which will result in a speed of rotation dependent on the electric torque. 
The flow will be dependent of the throttling effect of the runner, which is a function of the speed of rotation and the wicket gate 
position. The causality in laboratory tests and in a real hydropower plant is different. Hence, it is quite explainable that a S-shaped 
characteristic might occur. 

 

 

Nomenclature 
 

D1 Inlet diameter of the turbine runner [m] Τ Torque [Nm] 
D2 Outlet diameter of the runner [m] tR Specific rated torque [Nm/(m3/s)] 
B1 Runner width at inlet [m] ts Specific torque at ω=0 (starting torque) [Nm/(m3/s)] 
r Runner radius ω Angular speed of rotation [rad/s] 
H Head [m] c Absolute velocity [m/s] 
Ht Head difference over the runner [m] u Peripheral velocity [m/s] 
Q Flow [m3/s] v Relative velocity [m/s] 
Hth∞ Theoretical pump head [m] g Acceleration of gravity [m/s2] 
α1 Guide vane angle [o] ρ Density of water [kg/m3] 
β1 Runner inlet angle [o] h Dimensionless head 
β2 Runner outlet angle [o] q  Dimensionless flow 
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κ Guide vane opening degree ω~  Dimensionless angular speed 
  ms Dimensionless starting torque 
 
Subscripts: 
          1 – Runner inlet m – Meridional direction 
          2 – Runner outlet t – Turbine 
          R – Rated p – Pump 
          u – Peripheral direction G - Generator           
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Appendix A: The staring torque 

The torque, T, is defined by the Euler equation by: 

1 1 2 2( )u uT Q r c r cr= −           (A1) 

Examining the velocity diagram, the equation may be transformed to: 

2
1 1 1 2 2 1 1 2( cos cot sin )zT Q r c r A c rr α β α ω= + −        (A2) 

Examining the equation, the first two terms in the parenthesis, are functions of the absolute velocity and the geometrical 
properties. The equation has the form:  

 
2

2( )sT Q m rr ω= −           (A3) 
 
Where the specific starting torque is: 
 

1 1 1 2 2 1 1cos cot sins zt r c r A cα β α= +         (A4) 
 
The efficiency is Tω/ρgQH, hence: 
 

2
2

1 ( )st r
gH

η ω ω= −           (A5) 
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2
2( 1) 0

( ) 1 0s

qh

q m

σ ω
κ

ψ

 − − − = 
 

− − =



Demanding that 1 1
1

0 when :R
d
d

h α α
α

= =  

1 1 1 2 2 1 1
1

1 ( sin cot cos ) 0R Z R
d r c r A c
d gH

η ω α β α
α

= − + =       (A6) 

 

gives: 1
2 1

2

cot tan R
Z

r
A r

β a=          (A7) 

Substituting for cotβ2 in equation A4: 
 

1
1 1 1 2 1 1 1

2

cos tan sins z R
Z

rt r c r A c
A r

aaa  = −         (A8) 

1 1 1 1 1(cos tan sin )s Rt r c aaa  = +  
 
In the velocity diagram, cm1 is the flow divided on the perpendicular area Az, and in general 1 1 1sinmc c α= . The connection 

between the opening degree k and the guide vane angle is: 1 1sin sin Rα κ α= . Substituting in the equation for ts and remembering 
that Q=Qnq gives: 

 
1

1 1 1
1

(cos tan sin )
sin

R
s R

z R

rQ qt
A

aaa 
a κ

= +         (A9) 

 

Introducing dimensionless specific torque s
s

R

tm
t

= where rated specific torque is given by: 

1

1

 hence: m R R R
R R R R R R

R R R

T gH gH rgQ H T
Q u

h r ω
r ω

= = = =       (A10) 

 

1 1 1(cos tan sin )s
s R

R

t qm
t

ξ aaa 
κ

= = +         (A11) 

where 1 1R R

R

u c
gH

ζ =  which is a machine constant  

 
 

Appendix B Derivation of the self-governing parameter, σ, and the machine constant ξ 
 
ξ and ψ are dimensionless machine constants defined by the velocity vectors at the BEP.  
 

1 1R R

R

u c
gH

ξ =            (B1) 

 
2

2R

R

u
gH

ψ =            (B2) 

 
The stationary operational points may be found by setting the differential equations equal to zero, hence:  
 

     (B3) 
 

     (B4) 
 
 
 
Solving the equations for flow q: 
 

2 2 2( 1)q hκ σκ ω= ± − −          (B5) 
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The expression under the root sign will be negative at high angular speed of rotation, hence the absolute sign, and the flow will 

then be negative. 
 
 The opening degree, κ, is defined: 
 

R

q
q

κ = when ω = 1.          (B6) 

 
The slope of the flow characteristic can be found by taking the derivative of the flow:  
 

1
2 2 2 221 ( ( 1)) ( 2 )

2
dq h
d

κ σκ ω σκ
ω

−
= − − −


       (B7) 

 

At ω  = 1 and rated head, i.e. h=1 
dq
d

σκ
ω

= −


       (B8) 

 
Turbines are designed to have BEP at the rated values, i.e. at h = 1, κ = 1, q = 1 and ω  = 1. This implies also that 0=

ω
η

d
d

 at 

BEP. 
 
The efficiency is found by dividing the torque multiplied by the angular speed of rotation divided by flow multiplied by head, 

hence:  
 

1 ( )sm
h

h ψω ω= −             (B9) 

As shown in Appendix A, the dimensionless starting torque is: 1 1 1(cos tan sin )s R
qm ξ aaa 
κ

= + . At κ = 1, the guide vane 

angle α1 = α1R, hence: 
 

1 1 1 1
1 1 1

1 1

1

cos cos sin sin(cos tan sin ) ( )
cos cos

1
cos

R R R R
s R R R

R R

s
R

qm

qm

aaaa   ξ aaa   ξ
κ aa

ξ
κ a

= + = +

=
               (B10) 

 
By inserting the expression for ms in eq. (B9) and setting ω =1, and at ω =1 q=κ pr. definition, the efficiency is: 
 

1

1
cos R

η ξ ψ
α

= −           (B11) 

 
At BEP, h = hR, and a connection between the two machine constants ψ and ξ can be found: 
 

1( ) cosR Rξ η ψ α= +           (B12) 
 

The derivative of eq. (B11), setting: 
1

1
coss

r

m qξ
α

=  when κ = 1: 

 

1 1

1 12
cos cosR R

d dqq
d d

η ξ ψω ωξ
ω α α ω

= − + 
 

       (B13) 

 

At optimum point: 0d
d

η
ω

=


 and when ω  = 1  
dq
d

κσ
ω

= −


 and q=κ: 
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1 1

1 12 ( ) 0
cos cosR R

ξ ψ ξ s
α α

− + − =         (B14) 

 
Inserting the expression for ξ, eq (B12) gives: 
 

R

R

η ψσ
η ψ

−
=

+
           (B15) 
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