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Abstract 

This paper deals with the Design and Analysis of a Controlled Diffusion Aerofoil (CDA) Blade Section for an Axial 
Compressor Stator and Effect of incidence angle and Mach No. on Performance of CDA. CD blade section has been 
designed at Axial Flow Compressor Research Lab, Propulsion Division of National Aerospace Laboratories (NAL), 
Bangalore, as per geometric procedure specified in the U.S. patent (4). The CFD analysis has been performed by a 2-D 
Euler code (Denton’s code), which gives surface Mach No. distribution on the profiles. Boundary layer computations 
were performed by a 2-D boundary layer code (NALSOF0801) available in the SOFFTS library of NAL. The effect of 
variation of Mach no. was performed using fluent . The surface Mach no. distribution on the CD profile clearly indicates 
lower peak Mach no. than MCA profile. Further, boundary layer parameters on CD aerofoil at respective incidences 
have lower values than corresponding MCA blade profile. Total pressure loss on CD aerofoil for the same incidence 
range is lower than MCA blade profile.  
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1. Introduction 
The standard series of blades such as the NACA65/Circular Arc, or Double Circular Arc, NACA 400, Multipe Circular Arc 

Aerofoil, have been used in most of the current production compressors. A new compressor blade type is discussed here which has 
been developed as a replacement to the contemporary series. Controlled Diffusion Aerofoil is designed and optimized specifically 
for subsonic and transonic cascade applications. Through control of the diffusion of the aerofoil section, significant boundary 
layer separation can be avoided over the entire range of aerofoil operation for transonic application. Diffusion from supersonic to 
subsonic local surface velocity can be accomplished without developing shock waves. A family of airfoils capable of achieving 
the conditions has been developed which can be described by a number of geometric parameters. Computational Analysis clearly 
indicated an achievement of low loss and increased incidence range at elevated Mach. Number.  A comparatively high loading 
level, thicker leading and trailing edges can be achieved without affecting performance. These attributes can be utilized to achieve 
high compressor efficiency, fewer compressor blades and vanes, improved stability, improved durability and reduced development 
cost. 

2. Background  
The abrupt increase in the loss and decrease in turning of cascade compressor airfoils, as incident Mach number increases, is 

analogous to the transonic drag rise experienced by isolated airfoil section. As Mach number increases local patches of supersonic 
flow appear on airfoil surfaces, usually terminated by shock waves. The total pressure loss of the shock plus losses caused by 
shock induced boundary layer separation combine to limit the low loss Mach number range of cascade airfoils. To improve 
compressor efficiency, airfoil sections usually have been selected having thinner leading edges at high Mach numbers, in order to 
increase the transonic drag rise Mach number. However, this section results in decreased useful incidence angle range and 
decreased durability. 

 
Received September 13 2009; accepted for publication October 14 2009: Review conducted by Prof. Wang Le-qing. (Paper 
number O09042) 
Corresponding author: S. A. Channiwala, Professor, sac@med.svnit.ac.in              



 21

Whitcomb et al.[1] in 1965, demonstrated experimentally the existence of shockless    supercritical flows for isolated airfoil 
sections. Bauer, Garbedian and Kahn [ 2,3 ] provided analytical design procedure for supercritical wing sections which, through 
solution of potential equation in complex plane, permitted an airfoil shape to be derived from a specified shockless surface Mach 
number distribution. The Design and Analysis of a Controlled Diffusion Aerofoil (CDA) Blade Section for an Axial Compressor 
Stator and Comparison with a Conventional Multiple Circular Arc (MCA) Profile is presented here. This design approach of CDA 
conforms to the U.S patent specification by Lubenstein, et al[4].  

3. Different Types of Blade Profile 
The two main classes of blades shapes are DCA and MCA. The DCA blade shape is used for high subsonic to low supersonic 

Mach numbers.  The MCA blade shape is used extensively at higher supersonic relative Mach numbers. The polynomial 
(arbitrary) shape allows more flexibility than the MCA shape and in fact can duplicate the DCA and MCA shapes through proper 
selection of the polynomial coefficients.  The polynomial shape can be used to approximate the various airfoil series as 
mentioned above and also a new generation of aerofoils, called the Controlled Diffusion Aerofoils (CDA) shape. 

CDA shape is the one that employs the concept of shaping the blade beyond the point of peak suction of the surface velocity 
such that the diffusion rate and associated suction boundary layer results in minimum loss for the airfoil section. This is being 
employed with high degree of success for moderate to high subsonic and even to transonic blade elements. The supercritical blade 
shape is a special class of CDA’s where in addition to controlling diffusion beyond peak suction surface velocity, the forward 
portion of the blade is given a shape to perform supercritical operation. 

 
Fig. 1 Different blade profiles  Fig. 2 Comparison of Mach No. distribution on CDA and MCA 

4. Typical Characteristics of CDA and Comparison with MCA 
The salient features of CDA as shown in Fig.2 are as follows 
A continuous acceleration from the leading edge to the peak Mach number (at about 20% chord) on the aerofoil suction 

surface, to avoid premature laminar boundary layers separation or transition. 
A peak Mach number less than 1.3 to avoid boundary layer separation, which could be induced by severe shock wave 

boundary layer interaction should a shock wave develop at off design conditions. 
A continuous shock free deceleration from the peak to suction surface Mach No. to the trailing edge, maintaining a turbulent 

boundary layer with a low level of skin friction and avoiding separation ahead of the trailing edge. 
A nearly constant subsonic Mach number distribution on the pressure surface.  
In comparison, at first look the Mach number distribution of CDA and MCA appears to be similar. The peak Mach number on 

the suction surface for MCA is higher than that of CDA. In case of NACA65 and DCA profile the peak suction surface Mach 
number occurs at 40% to 50% of the blade chord. Thus the blade loading is shifted within the forward half of the chord about 20%. 
In case of CDA the rear half is more or less straight thereby enabling smooth and continuous deceleration up to trailing edge. 

5. Base Line Parameter 
t / c = 0.05397,  M1 = 0.75, β1= 46.947, σ = 1.955. 

6. Design Methodology for CDA Profile 
The design procedure involves generation of CD aerofoil for the given flow turning and geometric constraints. The design 

procedure has following four steps As given in the Lubestein  et al (4) U.S patent. 
Step 1: -Constuction of mean camber line. 
Step2: - Establishing thickness distribution over chord. 
Step 3: - Fitting thickness distribution on mean camber line. 
Step 4: - Closure of leading and trailing edge. 
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but the exit Mach number decreases. The static pressure increases with increase in incidence angle towards positive side from i = -
2. Keeping in view low peak suction surface Mach number and there after a  gradual deceleration up to trailing end, the CDA 
design with -2 deg incidence ( inlet metal angle = 44 deg ) was selected. The off design performance of original MCA profile for 
incidence range from i = + 4 to i = -4.947 and of CDA profile for incidence range from i = + 4 to i = -6 Fig. 5 produces similar 
results.  
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Comparison of Mach number distribution for CDA and MCA at different incidence angles (off design performance) 

9. Boundary Layer Predictions for effect of variation in incidence angle 
Boundary layer computations were made for all incidence conditions for CDA and original MCA profile at design Mach 

number of 0.75. The nature and variation of parameters like displacement thickness, momentum thickness and shape factor are 
discussed in following paragraphs. 

 
9.1 Displacement Thickness 
Variation of displacement thickness on both suction and pressure surfaces at design condition is shown in Fig.6 for CDA and 

original MCA profiles. On suction surface the displacement thickness increases gradually from leading to trailing edge for both 
CDA and original profile. At the trailing end, the value of displacement thickness for CDA (0.44 mm) is less than original MCA 
profile (0.5 mm). It is also observed that there is sudden decrease in value of displacement thickness at the trailing end.  This is 
due to the cusp.   Proper selection of cusp will reduce this effect. 

On pressure surface there is gradual increase in the value of the displacement thickness for original profile up to trailing end 
but for the CDA, the displacement thickness increases gradually from leading end to about 50 % of chord and then due to slight 
acceleration in flow or increase in Mach number, the displacement thickness growth is reduced for some distance and there after it 
again shows a gradual increase up to trailing end. The value for displacement thickness at trailing end for CDA (0.15 mm) is less 
than that for original profile (0.17 mm) at design incidence. As on suction surface at design condition, there is also sudden fall in 
value of displacement thickness at trailing end due to cusp. The results for off design performance on suction and pressure surface 
as shown in Fig.9a and Fig.10a indicates lower values of displacement thickness than original profile. 

 

 
Fig. 6 Variation of Displacement Thickness on CDA and MCA 
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Fig. 9a Effect of variation in incidence on Displacement Thickness for CDA at 0.75 Mach No. 

 

 

 
Fig. 10a Effect of variation in incidence on Displacement Thickness for  original MCA at 0.75 Mach No. 

 

 
 9.2. Momentum Thickness 
Variation of momentum thickness on both suction and pressure surfaces at design condition is shown in Fig.7 for CDA and 

original MCA profile. On suction surface the momentum thickness increases gradually from leading to trailing edge for both CDA 
and original profiles. At the trailing end, the value of momentum thickness for CDA (0.253 mm) is less than original MCA profile 
(0.32 mm). It is also observed that there is sudden decrease in value of momentum thickness at the trailing end.  This is due to 
the cusp.   Proper selection of cusp will reduce this effect. 

 On pressure surface there is gradual increase in the value of the momentum thickness for original profile up to trailing end 
but for the CDA, the momentum thickness increases gradually from leading end to about 50 % of chord and then due to slight 
acceleration in flow or increase in Mach number, the momentum thickness growth is reduced for some distance and there after it 
again shows a gradual increase up to trailing end. The value for momentum thickness at trailing end for CDA (0.109 mm) is less 
than that for original profile (0.118 mm) at design incidence. As on suction surface at design condition, there is also sudden fall in 
value of momentum thickness at trailing end due to cusp. The results for off design performance on suction and pressure surface 
as shown in Fig.9b and Fig.10b indicates lower values of momentum thickness than original profile. 
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Fig.7 Variation of Momentum Thickness on CDA and MCA 

 

 
Fig. 9b Effect of variation in incidence on Momentum Thickness for CDA at 0.75 Mach No. 

 

 
Fig. 10b Effect of variation in incidence on Momentum Thickness for  original MCA at 0.75 Mach No. 

 

9.3. Shape Factor 
Variations of shape factor on suction and pressure surface of CDA and original MCA profiles at respective design incidence 

are is shown in Fig.8 The shape factor on pressure surface for both CDA and original profiles is nearly the same. Shape factor 
values falls gradually up to 20% chord and then remains almost constant up to trailing end. Small irregularity at the trailing end is 
due to cusp. Similarly on suction surface there is a sudden fall in values of shape factor for CDA up to about 10% of chord 
followed by gradual decrease in values up to trailing end. However, for original profile, after sudden fall in values there is rise in 
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shape factor up to 20% of chord followed by uniform decrease up to trailing end. The off design performance of original MCA 
profile for incidence range from i = + 4 to i = -4.947 and of CDA profile for incidence range from i = + 4 to i = -6 showed similar 
results in terms of displacement thickness, momentum thickness and shape factor. The results for off design performance on 
suction and pressure surface as shown in Fig.9c and Fig.10c indicates lower values of shape factor than original profile. 

 
 

 
Fig. 8 Variation of Shape factor on CDA and MCA 

 

 
    Fig. 9c Effect of variation in incidence on shape factor for CDA at 0.75 Mach No. 

 

 
   Fig. 10c Effect of variation in incidence on shape factor for original MCA Profile at 0.75 Mach No. 
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9.4 . Total Pressure Loss Coefficient 
Total pressure loss coefficient can be calculated from the correlation in Ref. (8) given as  ω = 2 * (θ/c)*(σ/ cosβ2)*(cos 

β1/cosβ2)2*{(2*H2/(3*H2-1))/[1-(θ/c) *σ*H2/ cosβ2]} 
Where, 
θ : - Momentum thickness in mm     c : - Chord in mm  σ : - Solidity    β1: - Inlet flow angle in deg. β2: - Outlet 

flow angle in deg. H2: - Shape factor at exit of cascade. 
This formula will give an approximate value of total pressure loss coefficient at the cascade exit section.  When total loss is 

plotted against incidence angle, as shown in Fig.11, it is observed that the values increases with an increase in incidence angle 
towards positive side i.e. from i = -6 to i = 4 for both CDA and original MCA profile. At respective design incidence angles for 
CDA and original MCA profile the value of total pressure loss coefficient for CDA (0.0144) is less than that for original MCA 
profile (0.162). From above discussion it is concluded that the CDA profile has better design and off design performance than the 
original MCA profile. 

 
 
 

 
Fig. 11 Comparison of total pressure loss coefficient on CDA and MCA Profiles 

 

 

10. Effect of variation of Mach No. 
The effect of variation in inlet Mach No. shows the similar  trend for  CDA and Original MCA profile i.e. with the increase 

in inlet Mach No. the variation  is too less but CDA perform better than original MCA Profile. 

11. Conclusions 
A CDA blade section has been designed equivalent to the given MCA profile. Analysis of blade elements was performed with 

the help of a 2-D Euler code (Denton’s code) and 2-D boundary layer code. Peak suction surface Mach number for CDA section is 
lower than that for original MCA profile. Boundary layer parameters (δ*, θ) have lower values for CDA than that for original 
MCA profile. Total pressure loss for CDA is lower than that for original MCA profile. 

 

Nomenclatures  
 
β1* -- Inlet Metal angle (deg)        δ, DEAN  -- Deviation angle (deg) 

δ-- Boundary layer thickness (mm)     δ*-- Displacement thickness (mm) 

α, ALPA -- Alpa chord angle (deg)    θ  -- Momentum thickness (mm) 

μT  -- Turbulent viscosity (N s / m2)    μL  -- Laminar viscosity (N s / m2) 

τ, Tow, s -- Pitch (mm) 
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