• Title/Summary/Keyword: a cloned human

Search Result 316, Processing Time 0.034 seconds

Development of a Quantitative ELISA for Anti HER-2 Antibodies using Human HER-2 Recombinant Proteins (인간 HER-2 재조합 단백질을 사용한 항 HER-2 항체 단백질의 ELISA 정량 방법 개발)

  • Jung, Sun-Ki;Ryu, Chang-Seon;Choung, Kyu-Jin;Song, Gyu-Yong;Kim, Sang-Kyum
    • YAKHAK HOEJI
    • /
    • v.55 no.1
    • /
    • pp.16-21
    • /
    • 2011
  • HER-2 (Human Epidermal Growth Factor Receptor-2) is a protein giving higher aggressiveness in human breast cancers. Trastuzumab is a monoclonal antibody that targets HER-2 and is known to extend survival across all stages of HER2-positive breast cancer. In this study, we attempted to development of a quantitative ELISA (Enzyme-Linked ImmunoSorbent Assay) for evaluating anti HER-2 antibodies using human HER-2 recombinant proteins to support antibody producing processes and pharmacokinetic studies. We established direct or indirect ELISA method for the trastuzumab-like protein combined human recombinant HER-2. The ELISA method will prove to be great value in quantitating anti-HER-2 antibodies levels for developing anticancer antibodies.

A Rare and Often Unrecognized Brain Meningitis and Hepatopneumonic Congestion are a Major Cause of Sudden Death in Somatic Cloned Piglets

  • 박미령;조성근;임여정;박종주;김진회
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.18-18
    • /
    • 2003
  • In human, sudden infant death syndrome(SIDS) is synonyms for the sudden, unexpected and unexplained death of an infant. The incidence of SIDS has been estimated to be from 1 to 3%. Cloning has a relatively high rate of late abortion and early postnatal death, particularly when somatic cells are used as donors of nuclei and rates as high as 40 to 70% have been reported. However, the mechanisms for SIDS in cloned animals are not known yet. To date, few reports provide detailed information regarding phenotypic abnormality of cloned pigs. In this study, most of the cloned piglets were alive at term and readily recovered respiration. However, approximately 82% of male cloned piglets (81/22) died within a week after birth. Significant findings from histological examinations showed that 42% of somatic cloned male piglets died earlier than somatic cloned female piglets, most probably due to severe congestion of lung and liver or neutrophilic inflammation in brain, which indicates that unexpected phenotypes can appear as a result of somatic cell cloning. No anatomical defects in cloned female piglets were detected, but three of the piglets had died by diarrhea due to bacterial infection within 15 days after birth. Although most of male cloned piglets can be born normal in terms of gross anatomy, they develop phenotypic anomalies that include leydig cell hypoplasia and growth retardation post-delivery under adverse fetal environment and depigmentation of hair- and skin-color form puberty onset. This may provide a mechanism for development of multiple organ system failure in some cloned piglets. Th birth weights of male cloned pig in comparison with those of female cloned piglets are significantly reduced(0.8 vs 1.4kg) and showed longer gestational day(120 vs 114). In conclusion, brain meningitis and hepatopneumonic congestion are a major risk factor for SIDS and such pregnancy in cloned animals requires close and intensive antenatal monitoring.

  • PDF

Ethics for Cloned Human Beings: (<네버렛미고>를 통해본 복제 인간 윤리)

  • Kim, Mihye
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.8
    • /
    • pp.121-129
    • /
    • 2017
  • The evolution of biotechnology is no longer strange to the hypothetical scenario of cloning human genes to make cloned human beings. The characters of are cloned humans made in the laboratory by the 100-year-old life planning. They are cohabited in a school called Hailsham, where they are secretly reared. The purpose of this project is to provide healthy organs to real human patients with incurable diseases. The main characters Cathy, Tommy, and Ruth experience the growth of body and consciousness here during adolescence, and they also know the secret of identity as a clone. As adults, they move to a second residence, Cottage and are ready to begin organ donation. The second stage is also part of a program to provide more genuine-like organs to real patients. Even though they know all the plans that humans have built, they do not resist them and fatefully accept their situation. However, their non-responsiveness is not a declaration of renunciation of life, but a self-sacrificing life extension for another future that is the extension of life through their organ donation. The film emphasizes the fraternity and sacrificial attitudes of the cloned human beings and shows that it is necessary to continue the discussions on cloned human beings from a bio-ethical point of view supported by philosophical reasons.

Pharmacogenomic Application for Gene Targeting and Molecular Characterization of a Nucleoside Transporter hCNT2 in Human Intestine

  • Shin, Ho-Chul;Lee, Jong-Hwa;Lee, Han-Ok;Duxin Sun;Gordon L. Amidon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.158-159
    • /
    • 2003
  • We have cloned and functionally expressed a sodium dependent human nucleoside transporter, hCNT2, from a CNS cancer cell line U251. Our cDNA clone of hCNT2 had the same predicted amino acid sequence as the previously cloned hCNT2 transporter. Of the several cell lines studied, the best hCNT2 transport function was obtained when transiently expressed in U251 cells.(omitted)

  • PDF

Metabolism of Rutin and Poncirin by Human Intestinal Microbiota and Cloning of Their Metabolizing α-L-Rhamnosidase from Bifidobacterium dentium

  • Bang, Seo-Hyeon;Hyun, Yang-Jin;Shim, Juwon;Hong, Sung-Woon;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.18-25
    • /
    • 2015
  • To understand the metabolism of flavonoid rhamnoglycosides by human intestinal microbiota, we measured the metabolic activity of rutin and poncirin (distributed in many functional foods and herbal medicine) by 100 human stool specimens. The average α-L-rhamnosidase activities on the p-nitrophenyl-α-L-rhamnopyranoside, rutin, and poncirin subtrates were 0.10 ± 0.07, 0.25 ± 0.08, and 0.15 ± 0.09 pmol/min/mg, respectively. To investigate the enzymatic properties, α-L-rhamnosidase-producing bacteria were isolated from the specimens, and the α-L-rhamnosidase gene was cloned from a selected organism, Bifidobacterium dentium, and expressed in E. coli. The cloned α-L-rhamnosidase gene contained a 2,673 bp sequcence encoding 890 amino acid residues. The cloned gene was expressed using the pET 26b(+) vector in E. coli BL21, and the expressed enzyme was purified using Ni2+-NTA and Q-HP column chromatography. The specific activity of the purified α-L-rhamnosidase was 23.3 µmol/min/mg. Of the tested natural product constituents, the cloned α-L-rhamnosidase hydrolyzed rutin most potently, followed by poncirin, naringin, and ginsenoside Re. However, it was unable to hydrolyze quercitrin. This is the first report describing the cloning, expression, and characterization of α-L-rhamnosidase, a flavonoid rhamnoglycosidemetabolizing enzyme, from bifidobacteria. Based on these findings, the α-L-rhamnosidase of intestinal bacteria such as B. dentium seem to be more effective in hydrolyzing (1 →6) bonds than (1 →2) bonds of rhamnoglycosides, and may play an important role in the metabolism and pharmacological effect of rhamnoglycosides.

Gene Cloning and Nucleotide Sequence of Human Dihydrolipoamide Dehydrogenase-Binding Protein

  • Lee, Jeongmin;Ryou, Chongsuk;Jeon, Bong Kyun;Lee, Poongyeon;Woo, Hee-Jong;Kwon, Moosik
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.3
    • /
    • pp.421-426
    • /
    • 2002
  • The pyruvate dehydrogenase complex (PDC), a member of $\alpha$-keto acid dehydrogenase complex, catalyzes the oxidative decarboxylation of pyruvate with the formation of $CO_2$, acetyl-CoA, NADH, and $H^+$. This complex contains multiple copies of three catalytic components including pyruvate dehydrogenase (E1), dihydrolipoamide acetyltransferase (E2), and dihydrolipoamide dehydrogenase (E3). Two regulatory components (E1-kinase and phospho-E1 phosphatase) and functionally less-understood protein (protein X, E3BP) are also involved in the formation of the complex. In this study, we have partially cloned the gene for E3BP in human. Nine putative clones were isolated by human genomic library screening with 1.35 kb fragment of E3BP cDNA as a probe. For investigation of cloned genes, Southern blot analysis and the construction of the restriction map were performed. One of the isolated clones, E3BP741, has a 3 kb-SacI fragment, which contains 200 bp region matched with E3BP cDNA sequences. The matched DNA sequence encodes the carboxyl-terminal portion of lipoyl-bearing domain and hinge region of human E3BP. Differences between yeast E3BP and mammalian E3BP coupled with the remarkable similarity between mammalian E2 and mammalian E3BP were confirmed from the comparison of the nucleotide sequence and the deduced amino acid sequence in the cloned E3BP. Cloning of human E3BP gene and analysis of the gene structure will facilitate the understanding of the role(s) of E3BP in mammalian PDC.

Advancement and Application of Somatic Cell Nuclear Transfer Technique in Dog

  • Oh, H.J.;Hong, S.G.;Park, J.E.;Kim, M.J.;Gomez, M.N.;Kim, M.K.;Kang, J.T.;Kim, J.E.;Jang, G.;Lee, B.C.
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2009.02a
    • /
    • pp.49-57
    • /
    • 2009
  • The cloning of canids was succeeded in 2005, several years after the birth of Dolly the sheep and also after the cloning of numerous other laboratory and farm animal species. The delay of successful somatic cell nuclear transfer (SCNT)was due to the unique reproductive characteristics of the female dogin comparison to other domestic mammals, such as ovulation of immature canine oocyte and a requirement of 25 days for the completion of meiosis within the oviduct (Holst & Phemister, 1971). When the technology for the recovery of in vivo matured oocyte was established, the application of cloning also became possible and cloned dog offspring were obtained. This report summarizes the progress of technical procedures that are required for cloning canids and the application of this technique. The first cloned dog, Snuppy, was achieved using an in vivo-matured oocyte which was enucleated and transferred with an adult skin cell of male Afghan hound. After establishment of a criterion of well-matured oocyte for the improvement of SCNT efficiency, we obtained three cloned female Afghan hound and a toy poodle cloned from 14 year-old aged Poodle using SCNT through this factor. To date, cloned dogs appeared to be normal and those that have reached puberty have been confirmed to be fertile. Through application of canine SCNT technique, first, we demonstrated that SNCT is useful for conserving the breed of endangered animal from extinction through cloning of endangered gray wolves using inter-species SCNT and keeping the pure pedigree through the cloning of Sapsaree, a Korean natural monument. Secondly, we showed possibility of human disease model cloned dog and transgenic cloned dog production through cloning of red fluorescent protein expressing dog. Finally, SCNT can be used for the propagation of valuable genotypes for making elite seed stock and pet dog. In summary, dog cloning is a reproducible technique that offers the opportunity to preserve valuable genetics and a potential step towards the production of gene targeted transgenic cloned dogs for the study of human diseases.

  • PDF

Recent Advances in Cloning Technology in the Pig -Review-

  • Miyoshi, K.;Sato, E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.2
    • /
    • pp.258-264
    • /
    • 2000
  • Production systems for cloned pigs are very important not only for an increase in production of superior animals but also for the production of knockout animals with organs that do not contain antigens for xenotransplantation or to analyze functions of isolated human genes. At present, however, effective systems have not been developed. We have tried to produce cloned pigs by transfering cultured cells into enucleated oocytes and obtained some cloned embryos. To develop a production system for cloned pigs, the basic technologies needed to support such an effort must be improved.

Cloning of Chondroitinase ABC from Bacteroides stercoris HJ-15, a Human Intestinal Anaerobic Bacterium (사람 장내세균군집 유래 Bacteorides stericoris HJ-15의 Chondroitinase ABC의 클로닝)

  • Bang, Seo-Hyeon;Shim, Juwon;Hyun, Yang-Jin;Kim, Dong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.2
    • /
    • pp.140-144
    • /
    • 2016
  • The gene encoding chondroitinase ABC from a genomic library of Bacteroides stercoris HJ-15, which was isolated from human feces, was cloned. The cloned gene consisted of 3,090 bp and was predicted to encode a 1,029−amino-acid protein. The B. stercoris chondroitinase ABC gene was not homologous to other chondroitinase ABC genes; however, its amino acid sequence showed 71% homology to that of Bacteroides thetaiotaomicron. The gene was cloned in the pET-26b+ expression vector and expressed under the T7 promoter in Escherichia coli BL21(DE3). The purified recombinant chondroitinase ABC degraded chondroitin sulfates A, B, and C.