• Title/Summary/Keyword: a PID controller

Search Result 1,532, Processing Time 0.03 seconds

Hybrid Fuzzy Controller for High Performance (고성능 제어를 위한 하이브리드 퍼지 제어기)

  • Cho, Joon-Ho;Hwang, Hyung-Soo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.5
    • /
    • pp.48-55
    • /
    • 2008
  • In this paper, we propose a hybrid fuzzy controller for high performance. Hybrid fuzzy controller are combined Fuzzy and PID controller. In tuning the controller, the parameters of PID and the factors fuzzy controllers were obtained from the model identification and by using genetic algorithms, respectively. Simulation examples demonstrated a better performance of the proposed controller than conventional ones.

The Position Control by Neuro - Network PID controller (신경망 PID 제어기에 의한 위치제어)

  • 이진순;하홍곤;고태언
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.145-148
    • /
    • 2003
  • In this paper an nonlinear neuro PID controller is constructed by the control system of general PID controller using a Self-Recurrent Neural Network. And the games of the PID controller in the proposed control system are automatically adjusted by back-propagation algorithm of the neural network. Applying to the position control system, it's performance is verified through the results of computer simulation.

  • PDF

A Study on the Design of Linear PID Controller (선형 PID 제어기 설계에 관한 연구)

  • Cho, Joon-Ho
    • Journal of Industrial Convergence
    • /
    • v.16 no.2
    • /
    • pp.33-39
    • /
    • 2018
  • This paper describes the design method of the linear PID controller and proposed the design method in the future. The first PID design method is to ensure phase margin and gain margin. This method guarantees stability by designing in the frequency domain. The second method is an internal model control method. This method is to design the PID controller using the parameters of the internal model after identifying the internal model for the control model. Therefore, this method has a strong disturbance characteristic. Finally, a proposed Cascade and smith-Predictor controller. The combination of the cascade controller and the smith-predator of this method is a controller structure that has two advantages: robust control and optimal control. This method can obtain the performance evaluation index as the optimal controller design method. This PID controller design method becomes the basis of the nonlinear method and is being continuously studied.

Expanded PID Controller Using Double-Layers Neural Network In DC Servo System (DC서보계에서 2층신경망을 이용한 확대 PID 제어기)

  • 이정민;하홍곤
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.1
    • /
    • pp.88-94
    • /
    • 2001
  • In the position control system, the output of a controller is generally used as the input of a plant but the undesired noise is included in the output of a controller. Therefore, there is a need to use a precompensator for rejecting the undesired noise. In this paper, the expanded PID controller with a precompensator is constructed. The precompensator and PID controller are designed by a neural network with two-hidden layer and these coefficients are changed automatically to be a desired response of system when the response characteristic is changed under a condition.

  • PDF

Fuzzy Hybrid Control of Rhino XR-2 Robot (Rhino XR-2 로보트의 퍼지 혼성 제어)

  • Byun, Dae-Yeal;Sung, Hong-Suk;Lee, Kwae-Hi
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.299-303
    • /
    • 1993
  • There can be two methods in control systems: one is to use a linear controller, the other is to use a nonlinear controller. The PID controller and the fuzzy controller can be said to belong the linear and the nonlinear controller respectively. In this paper, a new hybrid controller which is consist of the linear PID controller of which the gain is tuned and the nonlinear self tuning fuzzy controller is proposed. In the PID controller, an algorithm which parameterizes the proportional, the intergral, and the derivative gain as a single parameter is used to improve the performance of the PID controller. In the self tuning fuzzy controller, an algorithm which changes the shape of the triangle membership function and changes the scaling factor which is multiplied to the error and the error change. The evaluation of the performance of the suggested algorithm is carried on by the simulation for the Rhino XH-2 robot manipulator with 5 links revolute joints.

  • PDF

Design of a Fuzzy P+ID controller for brushless DC motor speed control (BLDCM 의 속도 제어를 위한 퍼지 P+ID 제어기 설계)

  • Kim, Young-Sik;Lee, Chang-Goo;Kim, Sung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2161-2163
    • /
    • 2002
  • The PID type controller has been widely used in industrial application doc to its simply control structure, ease of design and inexpensive cost. However control performance of the PID type controller suffers greatly from high uncertainty and nonlinearity of the system, large disturbances and so on. This paper presents a hybrid fuzzy logic proportional plus conventional integral derivative controller (Fuzzy P+ID). In comparison with a conventional PID controller, only one additional parameter has to be adjusted to tune the Fuzzy P+ID controller. In this case, the stability of a system remains unchanged after the PID controller is replaced by the Fuzzy P+ID controller without modifying the original controller parameters. Finally, the proposed hybrid Fuazy P+ID controller is applied to BLDC motor drive. Simulation results demonstrated that the control performance of the proposed controlled is better than that of the conventional controller.

  • PDF

Design of Stable Controller to Sudden A/C Disturbance (급격한 에어콘 외란에 안정한 제어기 설계)

  • 이영춘;권대규;이성철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.106-112
    • /
    • 2000
  • The purpose of this paper is to study on the control of the engine idle speed under sudden A/C load which is one of the most severe disturbances on engines. Three types of the closed-loop controller are developed for the stable engine idle speed control. The input of the controller is an error of rpm. The output of the controller is an ISCV duty cycle. The anticipation delay is considered to deal with the delay time of the air mass in engine. The PID, Fuzzy and PID-type Fuzzy controllers with the anticipation delay have improved the engine idle speed condition more than current ECU map table under the A/C load.

  • PDF

Implementation of Automatic Target Tracking System for Multirotor UAVs Using Velocity Command Based PID controller (속도 명령 기반 PID 제어기를 이용한 멀티로터 무인항공기의 표적 자동 추종 시스템 구현)

  • Jeong, Hyeon-Do;Ko, Seon-Jae;Choi, Byoung-Jo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.6
    • /
    • pp.321-328
    • /
    • 2018
  • This paper presents an automatic target tracking flight system using a PID controller based on velocity command of a multirotor UAV. The automatic flight system includes marker based onboard target detection and an automatic velocity command generation replacing manual controller. A quad-rotor UAV is equipped with a camera and an image processing computer to detect the marker in real time and to estimate the relative distance from the target. The marker tracking system consists of PID controller and generates velocity command based on the relative distance. The generated velocity command is used as the input of the UAV's original flight controller. The operation of the proposed system was verified through actual flight tests using a marker on top of a moving vehicle and tracks it to successfully demonstrate its capability using a quad-rotor UAV.

Speed Control of BLDC Motor Drive Using an Adaptive Fuzzy P+ID Controller (적응 퍼지 P+ID 제어기를 이용한 BLDC 전동기의 속도제어)

  • Kwon, Chung-Jin;Han, Woo-Yang;Sin, Dong-Yang;Kim, Sung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1172-1174
    • /
    • 2002
  • An adaptive fuzzy P + ID controller for variable speed operation of BLDC motor drives is presented in this paper. Generally, a conventional PID controller is most widely used in industry due to its simple control structure and ease of design. However, the PID controller suffers from the electrical machine parameter variations and disturbances. To improve the tracking performance for parameter and load variations, the controller proposed in this paper is constructed by using an adaptive fuzzy logic controller in place of the proportional term in a conventional PID controller. For implementing this controller, only one additional parameter has to be adjusted in comparison with the PID controller. An adaptive fuzzy controller applied to proportional term to achieve robustness against parameter variations has simple structure and computational simplicity. The controller based on optimal fuzzy logic controller has an self-tuning characteristics with clustering. Computer simulation results show the usefulness of the proposed controller.

  • PDF

A Study of the Development of an Intelligent PID Cjontroller(II) (지능형 PID 제어기 개발에 관한 연구 II)

  • 유연운;이창구;김성중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.847-852
    • /
    • 1993
  • In this paper, we present a recursive algorithm for the auto-tuning of PID controllers by optimizing a GPC criterion. Also, we develop an intelligent PID controller by combination of a recursive algorithm together with a supervisor, that allows to adjust the main controller parameters (prediction horizon, control weighting, sample time etc.) using some simple rules which is mainly built up through relay tuning experiments. The intelligent PID controller has been implemented successfully on an IBM PC/AT and some simulation results are presented.

  • PDF