• Title/Summary/Keyword: ZrO_2$

Search Result 2,330, Processing Time 0.034 seconds

Phosphate Adsorption Characteristics of Zirconium Mesostructure Synthesized under Different Conditions (지르코늄 메조구조체의 합성조건 변화에 따른 인 흡착 특성)

  • Lee, Seung-Hak;Lee, Kwan-Yong;Lee, Sang-Hyup;Choi, Yong-Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.583-587
    • /
    • 2006
  • In this study, the phosphate adsorption characteristics of zirconium mesostructures synthesized under different conditions were estimated. X-ray diffraction analysis, phosphate adsorption isotherm test and kinetic test was performed for the zirconium mesostructures synthesized at different inorganic/surfactant molar ratio and with different surfactant templates. The test results were analyzed with adsorption models. From this work, it was found that at the inorganic/surfactant molar ratio of 1/0.50($0.013{\cdot}Zr(SO_4){_2}:0.068{\cdot}surfactant:5.55{\cdot}H_2O$), the meso-pores in the material could be most uniformly and clearly formed and thus the adsorption capacity and reaction rate of material could be maximized. And the pore size in the mesostructure increased with the chain length of surfactant template used, and maximum phosphate adsorption amount and reaction rate could be achieved with the zirconium mesostructure synthesized with the surfactant template of dodecyltrimethylammonium bromide.

The electrical properties of PLZT thin films on ITO coated glass with various post-annealing temperature (ITO 기판에 제작된 PLZT 박막의 후열처리 온도에 따른 전기적 특성평가)

  • Cha, Won-Hyo;Youn, Ji-Eon;Hwang, Dong-Hyun;Lee, Chul-Su;Lee, In-Seok;Sona, Young-Guk
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.28-33
    • /
    • 2008
  • Lanthanum modified lead zirconate titanate ($Pb_{1.1}La_{0.08}Zr_{0.65}Ti_{0.35}O_3$) thin films were fabricated on indium doped tin oxide (ITO)-coated glass substrate by R.F magnetron sputtering method. The thin films were deposited at $500^{\circ}C$ and post-annealed with various temperature ($550-750^{\circ}C$) by rapid thermal annealing technique. The structure and morphology of the films were characterized with X-ray diffraction (XRD) and atomic force microscopy (AFM) respectively. The hysteresis loops and fatigue properties of thin films were measured by precision material analyzer. As the annealing temperature was increased, the remnant polarization value was increased from $10.6{\mu}C/cm^2$ to $31.4{\mu}C/cm^2$, and coercive field was reduced from 79.9 kV/cm to 60.9 kV/cm. As a result of polarization endurance analysis, the remnant polarization of PLZT thin films annealed at $700^{\circ}C$ was decreased 15% after $10^9$ switching cycles using 1MHz square wave form at ${\pm}5V$.

PEO/PPC based Composite Solid Electrolyte for Room Temperature Operable All Solid-State Batteries (상온에서 작동되는 전고체전지 용 PEO/PPC 기반의 복합 고체 전해질)

  • Shin, Sohyeon;Kim, Sunghoon;Cho, Younghyun;Ahn, Wook
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.3
    • /
    • pp.105-112
    • /
    • 2022
  • For the commercialization of all-solid-state batteries, it is essential to develop a solid electrolyte that can be operable at room temperature, and it is necessary to manufacture all-solid-state batteries by adopting materials with high ionic conductivity. Therefore, in order to increase the ionic conductivity of the existing oxide-based solid, Li7La3Zr2O12 (LLZO) doped with heterogeneous elements was used as a filler material (Al and Nb-LLZO). An electrolyte with garnet-type inorganic filler doped was prepared. The binary metal element and the polymer mixture of poly(ethylene oxide)/poly(propylene carbonate) (PEO/PPC) (1:1) are uniformly manufactured at a ratio of 1:2.4, The electrochemical performance was tested at room temperature and 60 ℃ to verify room temperature operability of the all-solid-state battery. The prepared composite electrolyte shows improved ionic conductivity derived from co-doping of the binary elements, and the PPC helps to improve the ionic conductivity, thereby increasing the capacity of all-solid-state batteries at room temperature as well as 60 ℃. It was confirmed that the capacity retention rate was improved.

Properties of Dental CAD/CAM Zirconia (CAD/CAM 지르코니아 재료의 특성)

  • Bae, Tae-Sung
    • The Journal of the Korean dental association
    • /
    • v.49 no.5
    • /
    • pp.260-264
    • /
    • 2011
  • Zirconia ($ZrO_2$) is a crystalline dioxide of zirconium. Dental zirconia blocks for CAD/CAM are usually fabricated with powders of tetragonal zirconia polycrystals (TZP) stabilized with 3mol% yttria. Because of its mechanical properties similar to those of metals and color similar to tooth, it is evaluated to attain the two purposes at a time, strength and aesthetic in prosthetic dentistry. The ability of transformation of Y-TZP from tetragonal to monoclinic helps to prevent crack propagation and contributes the increase of strength and fracture toughness. Two different types of blocks, soft and hard, are used to prepare the zirconia frameworks. The fuzzy-sintered block is difficult in machining, so pre-sintered soft 3Y-TZP block is usually used to mill by computer aided machining.

Performance Evaluation of Diesel Oxidation Catalysts for Diesel Vehicles (디젤자동차용 산화촉매의 성능 평가)

  • 최병철;박희주;정명근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.59-64
    • /
    • 2003
  • Recently, as people pay attention to the environmental pollution, the emissions of diesel engine have been a serious problem. We carried out the performance evaluation test of Diesel Oxidation Catalysts (DOC) for HSDI diesel engine equipped vehicles. The DOC, basically coated with Pt catalyst, was manufactured with various washcoat materials. It was found that CO conversion efficiency depends on temperature, but THC conversion efficiency is dominated by temperature and space velocity. The THC and CO conversion efficiencies of aged catalysts were increased with additions of $ZrO_2$ and zeolite B in the washcoat. We found that DOC performance changes with coating techniques, even through it has same washcoat materials. The DOC coated by high temperature washcoat coating technology showed good conversion efficiency than low temperature washcoat coated DOC.

확산코팅기법에 의하여 Si 코팅된 TZM 합금의 산화시 코팅층의 확산거동

  • Kim, Min-Ho;Kim, Tae-Wan;Park, Jun-Sik;Kim, Jeong-Min;Lee, Seong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.40.1-40.1
    • /
    • 2011
  • TZM합금은 융점이 높은 Mo 기지에 미세한 (Zr,Ti)C의 석출물이 분산되어 있어 고온에서 다양한 부품에 응용가능하다. 하지만, TZM합금이 대기중 고온에 노출될 경우, 초기 산화물이며 약 $600^{\circ}C$부터 기화가 시작되는 $MoO_3$상이 형성됨으로써 물성에 치명적인 영향을 미친다. 이러한 산화거동을 막기 위하여 표면보호 코팅을 필요로 한다. 본 연구에서는 복잡한 형상과 대량생산이 가능하며 표면 코팅층과 모재의 접합성이 가장 강하다고 알려진 확산코팅법을 이용하여 Si을 TZM 합금에 코팅하였으며, 코팅층의 형성 속도론을 이해하기 위하여 온도별 및 시간별로 코팅을 수행하여 시간과 온도에 따른 코팅층의 형성 기구를 고찰하고자 하였다. Si의 확산코팅결과, $MoSi_2$층은 $1350^{\circ}C$에서 산화시에 두께가 감소하였으며, $Mo_5Si_3$상은 두께가 성장하였다. 코팅층의 확산거동을 속도론적 분석을 통하여 규명하고 논의하고자 한다.

  • PDF

A study on PZT capacitor on the glass substrate (유리 기판 위에서의 PZT 캐패시터에 관한 연구)

  • Ju, Pil-Yeon;Park, Young;Jeong, Kyu-Won;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.80-83
    • /
    • 2000
  • The post-annealing treatments on rf magnetron sputtered PZT($Pb_{1.05}(Zr_{0.52},\;Ti_{0.48})O_3$) thin films($4000{\AA}$) have been investigated for a structure of PZT/Pt/Ti/Coming glass(1737). Crystallization properties of PZT films were strongly dependent on RTA(Rapid Thermal Annealing) annealing temperature and time. We were able to obtain a perovskite structure of PZT at $650^{\circ}C$ and 10min. P-E curves of Pd/PZT/Pt capacitor demonstrate typical hysteresis loops. The measured values of $P_r$, $E_c$ were $8.1[{\mu}C/cm^2]$, 95[kV/cm] respectively. Polarization value decrease about 25% after $10^9$ cycles.

  • PDF

Tribological Characteristics with Purity Zirconia of Compression Ring Materials in Piston (피스톤 압축 링 재료의 지르코니아 순도에 따른 트라이볼로지 특성)

  • Oh, Seong-Mo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.91-96
    • /
    • 2006
  • The friction and wear properties of ceramics are very important in the applications to engineering ceramic parts such as seal rings, pump parts, automobile meter parts, and so on. In this study, the effects of each other purity on the mechanical and tribological properties of purity zirconia ceramics were investigated. Also in order to determine the effects of sliding distance, sliding speed, contact load, friction coefficient, the amount of worn out material at a certain time, and the prepared composites were measured. Crystalline phases and microstructure were examined with XRD and SEM. The results show that we obtained the good properties of friction coefficient and wear resistance at the purity 99.5% of zirconia. than this of the purity 95% were great at the wear amount of worn out material.

A Study on Zirconia/Metal Functionally Gradient Materials by Sintering Method(II) (소결법에 의한 $ZrO_2/Metal$계 경사기능재료에 관한 연구(II))

  • 정연길;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.1
    • /
    • pp.120-130
    • /
    • 1995
  • To analyze the mechanical property and the residual stress in functionally gradient materials(FGMs), disctype TZP/Ni-and TZP/SUS304-FGM were hot pressed using powder metallurgy compared with directly bonded materials which were fabricated by the same method. The continuous interface and the microstructure of FGMs were characterized by EPMA, WDS, optical microscope and SEM. By fractography, the fracture behavior of FGMs was mainly influenced by the defects which originated from the fabrication process. And the defectlike cracks in the FGMs induced by the residual stress have been shown to cause failure. This fact has well corresponded to the analysis of the residual stress distribution by Finite Element Method (FEM). The residual stress generated on the interface (between each layer, and matrix and second phase, respectively) were dominantly influenced on the sintering temperature and the material constants. As a consequence, the interfacial stability and the relaxation of residual stress could be obtained through compositional gradient.

  • PDF