• Title/Summary/Keyword: Zone 3

Search Result 6,050, Processing Time 0.039 seconds

Studies on the Desertification Combating and Sand Industry Development(III) - Revegetation and Soil Conservation Technology in Desertification-affected Sandy Land - (사막화방지(沙漠化防止) 및 방사기술개발(防沙技術開發)에 관한 연구(硏究)(III) - 중국(中國)의 황막사지(荒漠沙地) 녹화기술분석(綠化技術分析) -)

  • Woo, Bo-Myeong;Lee, Kyung-Joon;Choi, Hyung-Tae;Lee, Sang-Ho;Park, Joo-Won;Wang, Lixian;Zhang, Kebin;Sun, Baoping
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.1
    • /
    • pp.90-104
    • /
    • 2001
  • This study is aimed to analyze and to evaluate the revegetation and soil conservation technology in desertification-affected sandy land, resulting from the project of "Studies on the desertification combating and sand industry development". Main native plants for combating desertification : The general characteristics of vegetation distribution in desertified regions are partially concentrated vegetation distribution types including the a) desert plants in low zone of desert or sanddune of depressed basin, b) salt-resistant plants around saline lakes, c) grouped vegetation with Poplar and Chinese Tamarix of freshwater-lakes, saline-lakes and river-banks, d) gobi vegetation of gravel desert and e) grassland and oasis-woods around the alluvial fan of rivers, etc. Generally, Tamarix ehinensis Lour., Haloxylon ammodendron Bunge., Calligonum spp., Populus euphratica Oliver., Elaeagnus angustifolia L., Ulmus pumila L., Salix spp., Hedysarum spp., Caragana spp., Xanthoceras sorbifolia Bunge., Nitraria tangutorum Bobr., Lespedeza bicolor, Alhagi sparsifolia Shap., Capparis spinosa L., Artemisia arenaria DC., etc. are widely distributed in desertified regions. It is necessary for conducting research in the native plants in desertified regions. Analysis of intensive revegetation technology system for combating desertification : In the wind erosion region, the experimental research projects of rational farming systems (regional planning, shelterbelts system, protection system of oasis, establishment of irrigation-channel networks and management technology of enormous farmlands, etc.), rational utilization technology of plant resources (fuelwood, medicinal plants, grazing and grassland management, etc.), utilization technology of water resources (management and planning of watershed, construction of channel and technology of water saving and irrigation, etc.), establishment of sheltetbelts, control of population increase and increased production technology of agricultural forest, fuelwood and feed, etc. are preponderantly being promoted. And in water erosion region, the experimental research projects of development of rational utilization technology of land and vegetation, engineering technology and protection technology of crops, etc. are being promoted in priority. And also, the experimental researches on the methods of utilization of water (irrigation, drainage, washing and rice cultivation, etc.), agricultural methods (reclamation of land, agronomy, fertilization, seeding, crop rotation, mixed-cultivation and soil dressing works, etc.) and biological methods (cultivation of salt-resistant crops and green manure and tree plantation, etc.) for improvement of saline soil and alkaline soil in desertified-lands are actively being promoted. And the international cooperations on the revegetation technology development projects of desertified-lands are sincerely being required.

  • PDF

DEM Generation over Coastal Area using ALOS PALSAR Data - Focus on Coherence and Height Ambiguity - (ALOS PALSAR 자료를 이용한 연안지역의 DEM 생성 - 긴밀도와 고도 민감도 분석을 중심으로 -)

  • Choi, Jung-Hyun;Lee, Chang-Wook;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.6
    • /
    • pp.559-566
    • /
    • 2007
  • The generation of precise digital elevation model (DEM) is very important in coastal area where time series are especially required. Although a LIDAR system is useful in coastal regions, it is not yet popular in Korea mainly because of its high surveying cost and national security reasons. Recently, precise DEM has been made using radar interferometry and waterline methods. One of these methods, spaceborne imaging radar interferometry has been widely used to measure the topography and deformation of the Earth. We acquired ALOS PALSAR FBD mode (Fine Beam Dual) data for evaluating the quality of interferograms and their coherency. We attempted to construct DEM using ALOS PALSAR pairs - One pair is 2007/05/22 and 2007/08/22, another pair is 2007/08/22 and 2007/10/22 with respective perpendicular baseline of 820 m, 312m and respective height sensitivity of 75 m and 185m at southern of Ganghwa tidal flat, Siwha- and Hwaong-lake over west coastal of Korea peninsula. Ganghwa tidal flat has low coherence between 0.3 and 0.5 of 2007/05/22 and 2007/08/22 pair. However, Siwha-lake and Hwaong-lake areas have a higher coherence value (From 0.7 and 0.9) than Ganghwa tidal area. The reason of difference coherence value is tidal condition between tidal flat area (Ganghwa) and reclaimed zone (Siwha-lake and Hwaong-lake). Therefore, DEM was constructed by ALOS PALSAR pair over Siwha-lake and Hwaong-lake. If the temporal baseline is enough short to maintain the coherent phases and height sensitivity is enough small, we will be able to successfully construct a precise DEM over coastal area. From now on, more ALOS PALSAR data will be needed to construct precise DEM of West Coast of Korea peninsular.

A Study on the Construction Characteristics of Folk Houses Designated as Cultural Heritage in Jeolla-do Province (전라도 지역 문화재 지정 민가정원의 현황 및 조영특성)

  • Jin, Min-Ryeong;Jeong, Myeong-Seok;Sim, Ji-Yeon;Lee, Hye-Suk;Lee, Kyung-Mi;Jin, Hye-Yeong
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.38 no.4
    • /
    • pp.25-38
    • /
    • 2020
  • For the purpose of recording Folk House Garden, this study was to review the historical value, location, space composition, Placememnt of the Building, garden composition, and management status of Folk House Garden designated as a cultural asset in Jeolla-do and to promote continuous maintenance and preservation in the future and enhance its value. The results of the study are as follows. First, most of them have been influenced by the trend of the times, such as the creation of a modern private garden and the spread of agricultural and commercial development through the garden components influenced by the royal, Japanese, and Western styles. Second, there are differences in the spatial composition of private households and the way they handle sponsorship, depending on the geographical location. When the geographical features were divided into flat and sloping areas, private houses located on flat land were divided into walls, walls were placed around the support area, and flower systems and stone blocks were created. The private houses located on the slope were divided into two to three tiers of space, and the wooden plant, flower bed, and stone bed were naturally connected to the background forest without creating a wall at the rear hill. Third, the size of the house and the elements of the garden have been partially destroyed, damaged, and changed, and if there is a lack of records of the change process, there is a limit to the drawing floor plan. There were many buildings and garden components that were lost or damaged due to changes in the trend and demand of the times, and some of them without records had to rely on the memory of owners and managers. Fourth, the species in Warm Temperate Zone, which reflects the climatic characteristics of Jeolla-do, was produced, and many of the exotic species, not traditional ones, were introduced. Fifth, fine-grained tree management standards are needed to prepare for changes in spatial function and plant species considering modern convenience.

Estimation of the CY Area Required for Each Container Handling System in Mokpo New Port (목표 신항만의 터미널 운영시스템에 따른 CY 소요면적 산정에 관한 연구)

  • Keum, J.S.
    • Journal of Korean Port Research
    • /
    • v.12 no.1
    • /
    • pp.35-46
    • /
    • 1998
  • The CY can be said to function in various respect as a buffer zone between the maritime and overland inflow-outflow of container. The amount of storage area needed requires a very critical appraisal at pre-operational stage. A container terminal should be designed to handle and store containers in the most efficient and economic way possible. In order to achieve this aim it is necessary to figure out or forecast numbers and types of containers to be handled, CY area required, and internal handling systems to be adopted. This paper aims to calculate the CY area required for each container handling system in Mokpo New Port. The CY area required are directly dependent on the equipment being used and the storage demand. And also the CY area required depends on the dwell time. Furthermore, containers need to be segregated by destination, weight, class, FCL(full container load), LCL(less than container load), direction of travel, and sometimes by type and often by shipping line or service. Thus the full use of a storage area is not always possible as major unbalances and fluctuations in these flow occuring all the time. The calculating CY area must therefore be taken into account in terms of these operational factors. For solving such problem, all these factors have been applied to estimation of CY area in Mokpo New Port. The CY area required in Mokpo New Port was summarized in the conclusion section.

  • PDF

A Study on the Seasonal Water Quality Characteristics and Suitability of Waterfront Activitiesin Waterfront Areas (친수지구의 계절별 수질특성과 친수활동의 적합성에 관한 연구)

  • Taek-Ho Kim;Yoon-Young Chang
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.2
    • /
    • pp.134-145
    • /
    • 2023
  • Currently, the floodplains of major rivers are transforming into various types of waterfront spaces according to the increase in leisure activities and improved accessibility. In general, waterfront activities in river channels tend to be concentrated in summer, and the waterfront activities during this period directly affect water quality. Accordingly, it is necessary to accurately compare and evaluate the characteristics and water quality of waterfront activities during the period when waterfront activities are concentrated. In this study, the following research was conducted to compare and analyze the current status of waterfront activities of users of waterfront areas and the water quality of waterfront areas. First, three waterfront areas were selected for investigation using the information from the Ministry of Environment's water quality measurement network. Second, a survey was conducted on the satisfaction and types of waterfront activities targeting users of waterfront areas. Third, water quality grades were calculated based on monthly water quality measurement factors and compared. Fourth, statistical analysis (one-way analysis of variance) was conducted to see if there was a significant difference in water quality characteristics between periods of high waterfront activity and periods of low waterfront activity using water quality measurement data for the last 5 years. As a result of this analysis, the following conclusions were drawn in this study. First, the use of waterfront activities was investigated in the order of camping, water skiing, fishing, swimming, and rafting. Second, satisfaction factors for waterfront activities were investigated in the order of activity convenience, water quality, waterlandscape, transportation access convenience, and temperature. Third, it was found that satisfaction with water quality in waterfront areas was generally unsatisfactory regardless of the water quality grade presented by the competent authority. Fourth, as a result of comparing the water quality measurement network data of the Ministry of Environment by water quality grade, generally good grades were found, and in particular, there was a difference in grade frequency by season in the BOD category. Fifth, as a result of statistical analysis (one-way ANOVA) of water quality monitoring network data by season, there were statistically significant differences in COD, BOD, TP, and TOC except for DO. Considering the results of these studies, it is judged that it is necessary to prepare a comprehensive management system for water quality improvement in the waterfront zone and to improve water quality during periods of high waterfront activity, and to prepare a water quality forecasting system for waterfront areas in the future.

A Study on the Response Plan through the Analysis of North Korea's Drones Terrorism at Critical National Facilities - Focusing on Improvement of Laws and Systems - (국가중요시설에 대한 북한의 드론테러 위협 분석을 통한 대응방안 연구 - 법적·제도적 개선을 중심으로 -)

  • Choong soo Ha
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.2
    • /
    • pp.395-410
    • /
    • 2023
  • Purpose: The purpose of this study was to analyze the current state of drone terrorism response at such critical national facilities and derive improvements, especially to identify problems in laws and systems to effectively utilize the anti-drone system and present directions for improvement. Method: A qualitative research method was used for this study by analyzing a variety of issues not discussed in existing research papers and policy documents through in-depth interviews with subject matter experts. In-depth interviews were conducted based on 12 semi-structured interviews by selecting 16 experts in the field of anti-drone and terrorism in Korea. The interview contents were recorded with the prior consent of the study participants, transcribed back to the Korean file, and problems and improvement measures were derived through coding. For this, the threats and types were analyzed based on the cases of drone terrorism occurring abroad and measures to establish anti-drone system were researched from the perspective of laws and systems by evaluating the possibility of drone terrorism in the Republic of Korea. Result: As a result of the study, improvements to some of the problems that need to be preceded in order to effectively respond to drone terrorism at critical national facilities in the Republic of Korea, have been identified. First, terminologies related to critical national facilities and drone terrorism should be clearly defined and reflected in the Integrated Defense Act and the Terrorism Prevention Act. Second, the current concept of protection of critical national facilities should evolve from the current ground-oriented protection to a three-dimensional protection concept that considers air threats and the Integrated Defense Act should reflect a plan to effectively install the anti-drone system that can materialize the concept. Third, a special law against flying over critical national facilities should be enacted. To this end, legislation should be enacted to expand designated facilities subject to flight restrictions while minimizing the range of no fly zone, but the law should be revised so that the two wings of "drone industry development" and "protection of critical national facilities" can develop in a balanced manner. Fourth, illegal flight response system and related systems should be improved and reestablished. For example, it is necessary to prepare a unified manual for general matters, but thorough preparation should be made by customizing it according to the characteristics of each facility, expanding professional manpower, and enhancing response training. Conclusion: The focus of this study is to present directions for policy and technology development to establish an anti-drone system that can effectively respond to drone terrorism and illegal drones at critical national facilities going forward.

Verification of International Trends and Applicability in the Republic of Korea for a Greenhouse Gas Inventory in the Grassland Biomass Sector (초지 바이오매스 부문 온실가스 인벤토리 구축을 위한 국제 동향과 국내 적용 가능성 평가)

  • Sle-gee Lee;Jeong-Gwan Lee;Hyun-Jun Kim
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.4
    • /
    • pp.257-267
    • /
    • 2023
  • The grassland section of the greenhouse gas inventory has limitations due to a lack of review and verification of biomass compared to organic carbon in soil while grassland is considered one of the carbon storages in terrestrial ecosystems. Considering the situation at internal and external where the calculation of greenhouse gas inventory is being upgraded to a method with higher scientific accuracy, research on standards and methods for calculating carbon accumulation of grassland biomass is required. The purpose of this study was to identify international trends in the calculation method of the grassland biomass sector that meets the Tier 2 method and to conduct a review of variables applicable to the Republic of Korea. Identify the estimation methods and access levels for grassland biomass through the National Inventory Report in the United Nations Framework Convention on Climate Change and type the main implications derived from overseas cases. And, a field survey was conducted on 28 grasslands in the Republic of Korea to analyse the applicability of major issues. Four major international issues regarding grassland biomass were identified. 1) country-specific coefficients by land use; 2) calculations on woody plants; 3) loss and recovery due to wildfire; 4) amount of change by human activities. As a result of field surveys and analysis of activity data available domestically, it was found that there was a significant difference in the amount of carbon in biomass according to use type classification and climate zone-soil type classification. Therefore, in order to create an inventory of grassland biomass at the Tier 2 level, a policy and institutional system for making activity data should develop country-specific coefficients for climate zones and soil types.

Sequence Stratigraphy of the Yeongweol Group (Cambrian-Ordovician), Taebaeksan Basin, Korea: Paleogeographic Implications (전기고생대 태백산분지 영월층군의 순차층서 연구를 통한 고지리적 추론)

  • Kwon, Y.K.
    • Economic and Environmental Geology
    • /
    • v.45 no.3
    • /
    • pp.317-333
    • /
    • 2012
  • The Yeongweol Group is a Lower Paleozoic mixed carbonate-siliciclastic sequence in the Taebaeksan Basin of Korea, and consists of five lithologic formations: Sambangsan, Machari, Wagok, Mungok, and Yeongheung in ascending order. Sequence stratigraphic interpretation of the group indicates that initial flooding in the Yeongweol area of the Taebaeksan Basin resulted in basal siliciclastic-dominated sequences of the Sambangsan Formation during the Middle Cambrian. The accelerated sea-level rise in the late Middle to early Late Cambrian generated a mixed carbonate-siliciclastic slope or deep ramp sequence of shale, grainstone and breccia intercalations, representing the lower part of the Machari Formation. The continued rise of sea level in the Late Cambrian made substantial accommodation space and activated subtidal carbonate factory, forming carbonate-dominated subtidal platform sequence in the middle and upper parts of the Machari Formation. The overlying Wagok Formation might originally be a ramp carbonate sequence of subtidal ribbon carbonates and marls with conglomerates, deposited during the normal rise of relative sea level in the late Late Cambrian. The formation was affected by unstable dolomitization shortly after the deposition during the relative sea-level fall in the latest Cambrian or earliest Ordovician. Subsequently, it was extensively dolomitized under the deep burial diagenetic condition. During the Early Ordovician (Tremadocian), global transgression (viz. Sauk) was continued, and subtidal ramp deposition was sustained in the Yeongweol platform, forming the Mungok Formation. The formation is overlain by the peritidal carbonates of the Yeongheung Formation, and is stacked by cyclic sedimentation during the Early to Middle Ordovician (Arenigian to Caradocian). The lithologic change from subtidal ramp to peritidal facies is preserved at the uppermost part of the Mungok Formation. The transition between Sauk and Tippecanoe sequences is recognized within the middle part of the Yeongheung Formation as a minimum accommodation zone. The global eustatic fall in the earliest Middle Ordovician and the ensuing rise of relative sea level during the Darrwillian to Caradocian produced broadly-prograding peritidal carbonates of shallowing-upward cyclic successions within the Yeongheung Formation. The reconstructed relative sea-level curve of the Yeongweol platform is very similar to that of the Taebaek platform. This reveals that the Yeongweol platform experienced same tectonic movements with the Taebaek platform, and consequently that both platform sequences might be located in a body or somewhere separately in the margin of the North China platform. The significant differences in lithologic and stratigraphic successions imply that the Yeongweol platform was much far from the Taebaek platform and not associated with the Taebaek platform as a single depositional system. The Yeongweol platform was probably located in relatively open shallow marine environments, whereas the Taebaek platform was a part of the restricted embayments. During the late Paleozoic to early Mesozoic amalgamations of the Korean massifs, the Yeongweol platform was probably pushed against the Taebaek platform by the complex movement, forming fragmented platform sequences of the Taebaeksan Basin.

Determination of the Optimum Sampling Area for the Benthic Community Study of the Songdo Tidal Flat and Youngil Bay Subtidal Sediment (송도 갯벌과 영일만 조하대 저서동물의 군집조사를 위한 적정 채집면적의 결정)

  • Koh, Chul-Hwan;Kang, Seong-Gil;Lee, Chang-Bok
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.1
    • /
    • pp.63-70
    • /
    • 1999
  • The optimum sampling area which can be applied to the benthic community study is estimated from large survey data in the Songdo tidal flat and subtidal zone of Youngil Bay, Korea. A total of 250 samples by 0.02 $m^2$ box corer for the benthic fauna in Songdo tidal flat and 50 samples by 0.1 $m^2$ van Veen grab in Youngil Bay were taken from the total sampling area of 5 $m^2$. It was assumed that the sampling area could contain sufficient information on sediment fauna, if cumulative number of species, ecological indices, and similarity index by cluster analysis reflect the similarity level of 75% to those found at total sampling area (5 $m^2$). A total of 56 and 60 species occurred from Songdo tidal flat and Youngil Bay, respectively. The cumulative curve of the species number ($N_{sp}$) as a function of the sampling area (A in $m^2$ ) was fitted as $N_{sp}=37.379A^{0.257}$ ($r^2=0.99$) for intertidal fauna and $N_{sp}=40.895A^{0.257}$ ($r^2=0.98$) for subtidal fauna. Based on these curves and 75% of similarity to the total sampling area (5 $m^2$), the optimum sampling area was proposed as 1.6 $m^2$ for the intertidal and 1.5 $m^2$ for the subtidal fauna. Ecological indices (species diversity, richness, evenness and dominance indices) were again calculated on the basis of species composition in differently simulated sample sizes. Changes in ecological indices with these sample sizes indicated that samplings could be done by collecting fauna from < 0.5 $m^2$-1.5 $m^2$ on the Songdo tidal flat and from < 0.5 $m^2$-1.2 $m^2$ in Youngil Bay. Changes in similarity level of all units of each simulated sample size showed that sampling area of 0.3 $m^2$ (Songdo tidal flat) and 0.6 $m^2$ (Youngil Bay) should be taken to obtain a similarity level of 75%. In conclusion, sampling area which was determined by cumulative number of species, ecological indices and similarity index by cluster analysis could be determined as 1.5 $m^2$ (0.02 $m^2$ box corer, n=75) for Songdo tidal flat and 1.2 $m^2$ (0.1 $m^2$ van Veen grab, n=12) for Youngil Bay. If these sampling areas could be covered in the field survey, population densities of seven dominant species comprising 68% of the total faunal abundance occurring on Songdo tidal flat and six species comprising 90% in Youngil Bay can be estimated at the precision level of P=0.2.

  • PDF

DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA (한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발)

  • 박만배
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.02a
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF