DOI QR코드

DOI QR Code

Sequence Stratigraphy of the Yeongweol Group (Cambrian-Ordovician), Taebaeksan Basin, Korea: Paleogeographic Implications

전기고생대 태백산분지 영월층군의 순차층서 연구를 통한 고지리적 추론

  • Kwon, Y.K. (Korea Institute of Geoscience and Mineral Resources)
  • 권이균 (한국지질자원연구원 석유해저연구본부)
  • Received : 2012.05.24
  • Accepted : 2012.06.11
  • Published : 2012.06.28

Abstract

The Yeongweol Group is a Lower Paleozoic mixed carbonate-siliciclastic sequence in the Taebaeksan Basin of Korea, and consists of five lithologic formations: Sambangsan, Machari, Wagok, Mungok, and Yeongheung in ascending order. Sequence stratigraphic interpretation of the group indicates that initial flooding in the Yeongweol area of the Taebaeksan Basin resulted in basal siliciclastic-dominated sequences of the Sambangsan Formation during the Middle Cambrian. The accelerated sea-level rise in the late Middle to early Late Cambrian generated a mixed carbonate-siliciclastic slope or deep ramp sequence of shale, grainstone and breccia intercalations, representing the lower part of the Machari Formation. The continued rise of sea level in the Late Cambrian made substantial accommodation space and activated subtidal carbonate factory, forming carbonate-dominated subtidal platform sequence in the middle and upper parts of the Machari Formation. The overlying Wagok Formation might originally be a ramp carbonate sequence of subtidal ribbon carbonates and marls with conglomerates, deposited during the normal rise of relative sea level in the late Late Cambrian. The formation was affected by unstable dolomitization shortly after the deposition during the relative sea-level fall in the latest Cambrian or earliest Ordovician. Subsequently, it was extensively dolomitized under the deep burial diagenetic condition. During the Early Ordovician (Tremadocian), global transgression (viz. Sauk) was continued, and subtidal ramp deposition was sustained in the Yeongweol platform, forming the Mungok Formation. The formation is overlain by the peritidal carbonates of the Yeongheung Formation, and is stacked by cyclic sedimentation during the Early to Middle Ordovician (Arenigian to Caradocian). The lithologic change from subtidal ramp to peritidal facies is preserved at the uppermost part of the Mungok Formation. The transition between Sauk and Tippecanoe sequences is recognized within the middle part of the Yeongheung Formation as a minimum accommodation zone. The global eustatic fall in the earliest Middle Ordovician and the ensuing rise of relative sea level during the Darrwillian to Caradocian produced broadly-prograding peritidal carbonates of shallowing-upward cyclic successions within the Yeongheung Formation. The reconstructed relative sea-level curve of the Yeongweol platform is very similar to that of the Taebaek platform. This reveals that the Yeongweol platform experienced same tectonic movements with the Taebaek platform, and consequently that both platform sequences might be located in a body or somewhere separately in the margin of the North China platform. The significant differences in lithologic and stratigraphic successions imply that the Yeongweol platform was much far from the Taebaek platform and not associated with the Taebaek platform as a single depositional system. The Yeongweol platform was probably located in relatively open shallow marine environments, whereas the Taebaek platform was a part of the restricted embayments. During the late Paleozoic to early Mesozoic amalgamations of the Korean massifs, the Yeongweol platform was probably pushed against the Taebaek platform by the complex movement, forming fragmented platform sequences of the Taebaeksan Basin.

전기 고생대 태백산분지 영월층군은 탄산염-규산쇄설성 퇴적암 복합체로서 하부로부터 삼방산층, 마차리층, 와곡층, 문곡층, 영흥층으로 이루어져있다. 영월층군에 대한 순차층서학적 분석에 따르면 중기 캠브리아기에 일어난 범람에 의해 최하부의 규산쇄설성 사질 퇴적암이 우세한 삼방산층이 퇴적되었다. 이어지는 후중기 캠브리아기 ~ 전후기 캠브리아기에 지속적으로 발생한 빠른 해수면 상승으로 마차리층 하부에는 셰일, 입자암, 각력암층을 협재한 사면 혹은 심부 램프 시퀀스가 형성되었다. 후기 캠브리아기 동안 지속된 해수면 상승은 실질적인 퇴적가능공간을 창출하였고, 조하대 환경에 탄산염 퇴적물 공장이 만들어졌으며, 탄산염 대지에는 마차리층을 구성하는 탄산염암이 우세한 조하대 시퀀스가 형성되었다. 마차리층 상부의 와곡층은 후후기 캠브리아기의 완만한 해수면 상승국면에서 만들어진 탄산염 램프 시퀀스로 해석되며, 퇴적 당시에는 리본 탄산염암과 탄산염 역암을 포함하는 이회암으로 구성되었던 것으로 보인다. 와곡층은 퇴적직후에 일차적으로 캠브리아기와 오르도비스기 사이의 해수면 하강국면에서 불안전 백운암화 과정을 거치고, 후에 심부 매몰 속성환경에서 광범위한 백운암화 작용을 받은 것으로 해석된다. 전기 오르도비스기에도 세계적인 해수면 상승과 해침은 지속되었으며, 영월층군의 조하대 램프 퇴적환경은 그대로 유지되어 탄산염 역암층을 협재하는 석회이암과 이회암이 교호하는 전형적인 램프 시퀀스인 문곡층이 형성되었다. 문곡층은 중기 오르도비스기에 퇴적된 것으로 알려진 영흥층에 덮여 있다. 영흥층은 주로 윤회층리를 보이는 조석대지 탄산염암으로 이루어져 있으며, 문곡층의 최상부에서 조하대 퇴적환경이 영흥층의 조석대지 퇴적환경으로 변화한다. 세계적 1차 규모 순차 경계면인 소크(Sauk)와 티피카누(Tippecanoe) 시퀀스의 경계는 영흥층 중부에서 관찰되는 최소퇴적가능공간 부근에서 인지된다. 중기 오르도비스기 초기의 세계적 해수면 하강과 이어지는 해수면의 급격한 상승은 영흥층의 전반적인 상향 천해화 윤회층의 전진퇴적체를 형성하였다. 영월층군이 퇴적된 영월 탄산염 대지의 상대적 해수면 변동곡선을 복원해 보면 같은 태백산 분지의 태백층군이 퇴적된 태백 탄산염 대지의 해수면 변동 곡선과 유사함을 확인할 수 있다. 이것은 두 개의 탄산염 대지가 유사한 조 구조적 운동 역사를 갖는다는 것을 의미하며, 이러한 유사성은 영월층군이 형성된 영월 탄산염 대지가 비록 태백층군이 퇴적된 태백 탄산염 대지와 상이한 퇴적시스템을 갖기는 하지만 상대적으로 가까운 지역에 속해 있었음을 암시한다. 퇴적층서 분석결과에 따르면 영월 탄산염 대지는 태백 탄산염 대지에 비해 상대적으로 열린 천해 환경이었을 것으로 추측된다. 고생대 후기와 중생대 전기에 걸쳐 발생한 북중국지괴와 남중국지괴의 충돌 시기에 영월 탄산염 대지와 태백 탄산염 대지가 복잡한 이동과정을 거쳐 현재의 태백산 분지에 모이게 된 것으로 해석된다.

Keywords

References

  1. Cheong, C.H. (1969) Stratigraphy and Paleontology of the Sancheog Coalfield, Gangweon-do, Korea: Joural of the Geological Society of Korea, v.5, p.13-54.
  2. Cho, H.S. and Kim, J.Y. (2007) Graptolite biostratigraphy and its correlation of the Mungok and Yeonghung formations at Yeongwol area, Kore: Geosciences Journal, v.11, p.23-38 https://doi.org/10.1007/BF02910378
  3. Choi, D.K. (1998) The Yongwol Group (Cambrian-Ordovician) redefined: a proposal for the stratigraphic nomenclature of the Choson Supergroup: Geosciences Journal, v.2, p.220-234. https://doi.org/10.1007/BF02910166
  4. Choi, D.K. and Kim, E.Y. (2006) Occurrence of Changshania (Trilobita, Cambrian) in the Taebaeksan Basin, Korea and its stratigraphic and paleogeographic significance: Palaeogeography, Palaeoclimatology, Palaeoecology, v.242, p.343-354. https://doi.org/10.1016/j.palaeo.2006.07.002
  5. Choi, D.K., Lee, J.G. and Choi, S.Y. (1999) Middle Cambrian trilobites from the Sambangsan Formation in Yongwol area, Korea: Journal of the Paleontological Society of Korea, v.15, p.134-144.
  6. Choi, D.K., Kim, D.H. and Sohn, J.W. (2001) Ordovician trilobite faunas and depositional history of the Taebaeksan Basin, Korea: Implications for paleogeography: Alcheringa, v.25, p.53-68.
  7. Choi, D.K., Chough, S.K., Kwon, Y.K., Lee, S.B., Woo, J., Kang, I., Lee, H.S., Lee, S.M., Sohn, J.W., Shinn, Y.J. and Lee, D.J. (2004) Taebaek Group (Cambrian-Ordovician) in the Seokgaejae section, Taebaeksan Basin:a refined lower Paleozoic stratigraphy in Korea: Geosciences Journal, v.8, p.125-151. https://doi.org/10.1007/BF02910190
  8. Choi, D.K. and Chough, S.K. (2005) The Cambrian-Ordovician stratigraphy of the Taebaeksan Basin, Korea: a review: Geosciences Journal, v.9, p.187-214. https://doi.org/10.1007/BF02910579
  9. Choi, S.J. and Woo, K.S. (1993) Depositional environment of the Ordovician Yeongheung Formation near Machari area, Yeongweol, Kangweondo, Korea: Journal of the Geological Society of Korea, v.29, p.375-386.
  10. Chough, S.K., Kwon, S.-T., Ree, J.-H. and Choi, D.K. (2000) Tectonic and sedimentary evolution of the Korean peninsula: a review and new view: Earth-Science Reviews, v.52, p.175-235. https://doi.org/10.1016/S0012-8252(00)00029-5
  11. Chung, G.S. and Land, L.S. (1997) Dolomitization of the periplatform carbonate slope deposit, the Machari Formation (Middle to Late Cambrian), Korea: Carbonates and Evaporites, v.12, p.163-176. https://doi.org/10.1007/BF03175414
  12. Chwae, U. and Choi, S. (1999) On the Possible Extension of the Sulu Belt Toward the East through the Korean Peninsula: Gondwana Research, v.2, p.540-542. https://doi.org/10.1016/S1342-937X(05)70188-X
  13. Cluzel, D., Jolivet, L. and Cadet, T.-P. (1991) Early middle Paleozoic intraplate orogeny in the Ogcheon belt (South Korea): a new insight on the Paleozoic buildup of East Asia: Tectonics, v.10, p.1130-1151. https://doi.org/10.1029/91TC00866
  14. Hong, P., Lee, J.G. and Choi, D.K. (2003) Lejopyge armata and associated trilobites from the Machari Formation (Middle to Late Cambrian) of Korea and their stratigraphic significance: Journal of Paleontology, v.77, p.895-907. https://doi.org/10.1666/0022-3360(2003)077<0895:TFTLAZ>2.0.CO;2
  15. Kim, S.W. (2005) Amphibole 40Ar/39Ar Geochronology from the Okcheon Metamorphic Belt, South Korea and its Tectonic Implications: Gondwana Research, v.8, p.385-402. https://doi.org/10.1016/S1342-937X(05)71142-4
  16. Kim J.C. and Lee, Y.I. (1996) Marine diagenesis of Ordovician Carbonate sediments, Korea: Sedimentary Geology, v.105, p.241-257. https://doi.org/10.1016/0037-0738(95)00141-7
  17. Kim, J.H., Lee, Y.I., Li, M. and Bai, Z. (2001) Comparison of the Ordovician-Carboniferous Boundary Between Korea and NE China: Implications for Correlation and Tectonic Evolution: Gondwana Research, v.4, p.39-53. https://doi.org/10.1016/S1342-937X(05)70653-5
  18. Kim, D.H. and Choi, D.K. (2000) Lithostratigraphy and biostratigraphy of the Mungok Formation (Lower Ordovician), Yongwol, Korea: Geoscience Journal, v.4, p.301-311. https://doi.org/10.1007/BF02914039
  19. Kim, D.H. and Choi, D.K. (2002) Facies of a Lower Ordovician carbonate shelf (Mungok Formation: Taebaeksan Basin, Korea): Facies, v.47, p.43-56. https://doi.org/10.1007/BF02667705
  20. Kobayashi, T. (1966) The Cambro-Ordovician formations and faunas of South Korea: Part 10, stratigraphy of the Chosen Group of Korea and South Manchuria and its relation to the Cambro-Ordovician formations of other areas. section A, The Chosen Group of South Korea: Journal of the Faculty of Science. Imperial University of Tokyo, v.2, p.1-84.
  21. Kwon, Y.K., Lee, D.J., Choi, D.K. and Chough, S.K. (2003) Lower Ordovician sponge bioherms in the Makkol Formation, Taebaeksan Basin, Mideast Korea: Facies, v.48, p.79-90. https://doi.org/10.1007/BF02667531
  22. Kwon, Y.K., Chough, S.K., Choi, D.K. and Lee, D.J. (2006) Sequence stratigraphy of the Taebaek Group (Cambrian-Ordovician), Mideast Korea: Sedimentary Geology, v.192, p.19-55. https://doi.org/10.1016/j.sedgeo.2006.03.024
  23. Kwon, S., Sajeev, K., Mitra, G., Park, Y., Kim, S.W. and Ryu, I.C. (2009) Evidence of Permo-Triassic collision in Far East Asia: the Korean collisional orogen: Earth and Planetary Science Letters, v.279, p.340-349. https://doi.org/10.1016/j.epsl.2009.01.016
  24. Lee, H.Y. (1987) Paleozoic Erathem, Choson Supergroup: In: Lee, D.S. (Ed.), Journal of the Geological Society of Korea, Seoul, p.49-82.
  25. Lee, J.G. (1995) Late Cambrian Trilobites from the Machari Formation, Yeongweol, Korea: Ph.D. thesis, Seoul National University, Seoul, 418p.
  26. Lee, Y.I. and Kim, Y. (2001) Characterization of Quartzites in the Southern Korean Peninsula: Gondwana Research, v.4, p.677-678. https://doi.org/10.1016/S1342-937X(05)70473-1
  27. Meng, X., Ge, M. and Tucker, M.E. (1997) Sequence stratigraphy, sealevel changes and depositional systems in the Cambro-Ordovician of the North China carbonate platform: Sedimentary Geology, v.114, p.189-222. https://doi.org/10.1016/S0037-0738(97)00073-0
  28. Metcalfe, I. (2006) Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments: The Korean Peninsula in context: Gondwana Research, v.9, p.24-46. https://doi.org/10.1016/j.gr.2005.04.002
  29. Meyerhoff, A.A., Kamen-Kaye, M., Chen, C. and Taner, I. (1991) China-Stratigraphy, Paleogeography, and Tectonics: Kluwer Academic Publishers, Dordrecht, The Netherlands.
  30. Oh, C.H. (2006) A new concept on tectonic correlation between Korea, China and Japan: Histories from the late Proterozoic to Cretaceous: Gondwana Research, v.9, p.47-61. https://doi.org/10.1016/j.gr.2005.06.001
  31. Oh, C.H., Krishan, S., Kim, S.W. and Kwon, Y.W. (2006) Mangerite magmatism associated with a probable Late-Permian to Triassic Hongseong-Odesan collision belt in South Korea: Gondwana Research, v.9, p.95-105. https://doi.org/10.1016/j.gr.2005.06.005
  32. Park, K.K., Choi, D.K. and Kim, J.H. (1994) Mungog Formation (Lower Ordovician) in the northern part of Yeongweol area: lithostratigraphic subdivision and trilobite faunal assemblages: Journal of the Geological Society of Korea, v.30, p.168-181.
  33. Ree, J.H., Cho, M., Kwon, S.T. and Nakamura, E. (1996) Possible eastward extension of Chinese collision belt in South Korea : The Imjingang Belt: Geology, v.24, p.1071-1074. https://doi.org/10.1130/0091-7613(1996)024<1071:PEEOCC>2.3.CO;2
  34. Ryu, I., Oh, C.H. and Kim, S.W. (2005) A Middle Ordovician Drowning Unconformity on the Northeastern Flank of the Okcheon (Ogcheon) Belt, South Korea: Gondwana Research, v.8, p.511-528. https://doi.org/10.1016/S1342-937X(05)71152-7
  35. Sepkoski, J.J.Jr. (1982) Flat-pebble conglomerates, storm deposits, and the Cambrian bottom fauna: In: Einsele, G., Seilacher, A. (Eds.), Cyclic Event and Stratification, p.371-388.
  36. Sloss, L.L. (1963) Sequences in the cratonic interior of North America: Geological Society of America Bulletin, v.74, p.93-114. https://doi.org/10.1130/0016-7606(1963)74[93:SITCIO]2.0.CO;2
  37. Vail, P.R., Mitchum Jr., R.M. and Thompson, S. (1977) Seismicstratigraphy and global changes of sea level: In: Payton, C.E. (Ed.), Seismic Stratigraphy-Applications to Hydrocarbon Exploration: AAPG Memoir, American Association of Petroleum Geologists (AAPG), v.26, p.83-97.
  38. Woo, J., Chough, S.K. and Han, Z. (2008) Chambers of Epiphyton thalli in microbial buildups, Zhangxia Formation (Middle Cambrian), Shandong Province, China: Palaios, v.23, p.55-64. https://doi.org/10.2110/palo.2006.p06-103r
  39. Woo, K.S. and Moore, C.H. (1996) Burial dolomitization and dedolomitization of the Late Cambrian Wagok Formation, Yeongweol, Korea: Carbonates and Evaporites, v.11, p.104-112. https://doi.org/10.1007/BF03175789
  40. Woo, K.S. and Park, B.K. (1989) Depositional environments and diagenesis of the Sedimentary rocks, Choseon Supergroup, Korea: past, present, and further; the state of the art: Journal of the Geological Society of Korea, v.25, p.347-363.
  41. Yin, A. and Nie, S. (1993) An indentation model for the North and South China collision and development of the Tan-Lu and Honam fault systems, eastern Asia: Tectonics, v.12, p.810-813.
  42. Yosimura, I. (1940) Geology of the Neietsu District, Kogendo, Tyosen: Journal of the Geological Society of Japan, v.40, p.112-122.
  43. Yoo, C.M., Lee, Y.I. and Paik, I.S. (1994) Evidence for hypersaline conditions in the Middle Ordovician Yeongheung formation, Korea: Journal of the Geological Society of Korea, v.30, p.355-368.
  44. Yoo, C.M. and Lee, Y.I. (1997) Depositional cyclicity of the Middle Ordovician Yeongheung Formation, Korea: Carbonates & Evaporites, v.12, p.192-203. https://doi.org/10.1007/BF03175417
  45. Zhai, M., Shao, J., Hao, J. and Peng, P. (2003) Geological Signature and Possible Position of the North China Block in the Supercontinent Rodinia: Gondwana Research, v.6, p.171-183. https://doi.org/10.1016/S1342-937X(05)70968-0
  46. Zhai, M., Guo, J., Li, Z., Chen, D., Peng, P., Li, T., Hou, Q. and Fan, Q. (2007) Linking the Sulu UHP belt to the Korean Peninsula: Evidence from eclogite, Precambrian basement, and Paleozoic sedimentary basins: Gondwana Research, v.12, p.388-403. https://doi.org/10.1016/j.gr.2007.02.003
  47. Zhang, Z., Robson, S.P., Emig, C. and Shu, D. (2008) Early Cambrian radiation of brachiopods: A perspective from South China: Gondwana Research, v.14, p.241-254. https://doi.org/10.1016/j.gr.2007.08.001

Cited by

  1. Structural style of the Okcheon fold-thrust belt in the Taebaeksan Zone, Korea vol.105, 2015, https://doi.org/10.1016/j.jseaes.2015.03.017
  2. Tracking Paleozoic evolution of the South Korean Peninsula from detrital zircon records: Implications for the tectonic history of East Asia vol.50, 2017, https://doi.org/10.1016/j.gr.2017.05.009
  3. Phanerozoic polyphase orogenies recorded in the northeastern Okcheon Belt, Korea from SHRIMP U-Pb detrital zircon and K-Ar illite geochronologies 2017, https://doi.org/10.1016/j.jseaes.2017.08.002
  4. Evolution of the Taebaeksan Basin, Korea: I, early Paleozoic sedimentation in an epeiric sea and break-up of the Sino-Korean Craton from Gondwana pp.10384871, 2018, https://doi.org/10.1111/iar.12275