• 제목/요약/키워드: ZnSe:Cu

검색결과 287건 처리시간 0.035초

Characterization of an In2Se3 Passivation Layer for CIGS Solar Cells with Cd-free Zn-containing Atomic-layer-deposited Buffers

  • Kim, Suncheul;Lee, Ho Jin;Ahn, Byung Tae;Shin, Dong Hyeop;Kim, Kihwan;Yun, Jae Ho
    • Current Photovoltaic Research
    • /
    • 제9권3호
    • /
    • pp.96-105
    • /
    • 2021
  • Even though above 22% efficiencies have been reported in Cd-free Cu(In,Ga)Se2 (CIGS) solar cell with Zn-containing buffers, the efficiencies with Zn-containing buffers, in general, are well below 20%. One of the reasons is Zn diffusion from the Zn-containing buffer layer to CIGS film during buffer growth. To avoid the degradation, it is necessary to prevent the diffusion of Zn atoms from Zn-containing buffer to CIGS film. For the purpose, we characterized an In2Se3 film as a possible diffusion barrier layer because In2Se3 has no Zn component. It was found that an In2Se3 layer grown at 300℃ was very effective in preventing Zn diffusion from a Zn-containing buffer. Also, the In2Se3 had a large potential barrier in the valence band at the In2Se3/CIGS interface. Therefore, In2Se3 passivation has the potential to achieve a super-high efficiency in CIGS solar cells that employ Cd-free ALD processed buffers containing Zn.

용액법을 이용한 나트륨 도핑에 따른 Cu2ZnSnSe4 (CZTSSe) 박막의 합성 및 특성 평가 (The Effects of Sodium Doping on the Electrical Properties of the Cu2ZnSn(S,Se)4 (CZTSSe) Solar Cells)

  • 심홍재;김지훈;강명길;김진혁
    • 한국재료학회지
    • /
    • 제28권10호
    • /
    • pp.564-569
    • /
    • 2018
  • $Cu_2ZnSn(S,Se)_4$ (CZTSSe) films were prepared on Mo coated soda lime glass substrates by sulfo-selenization of sputtered stacked Zn-Sn-Cu(CZT) precursor films. The precursor was dried in a capped state with aqueous NaOH solution. The CZT precursor films were sulfo-selenized in the S + Se vapor atmosphere. Sodium was doped during the sulfo-selenization treatment. The effect of sodium doping on the structural and electrical properties of the CZTSSe thin films were studied using FE-SEM(field-emission scanning electron microscopy), XRD(X-ray diffraction), XRF(X-ray fluorescence spectroscopy), dark current, SIMS(secondary ion mass spectrometry), conversion efficiency. The XRD, XRF, FE-SEM, Dark current, SIMS and cell efficiency results indicated that the properties of sulfo-selenized CZTSSe thin films were strongly related to the sodium doping. Further detailed analysis and discussion for effect of sodium doping on the properties CZTSSe thin films will be discussed.

광흡수층 적용을 위한 PLD용 $Cu_2ZnSnSe_4$ 타겟 제조와 증착 박막의 특성 (Characteristics of $Cu_2ZnSnSe_4$ Thin Film Solar Absorber Prepared by PLD using Solid Target)

  • 정운화;라흐멧 아드히 위보우;김규호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.130-133
    • /
    • 2009
  • $Cu_2ZnSnSe_4$(CZTSe) is one of the promising materials for the solar cell due to its abundant availability in the nature. In this study, we report the fabrication of CZTSe thin film by Pulsed Laser Deposition(PLD) method using quaternary compound target on sodalime glass substrate. The quaternary CZTSe compound target was synthesized by solid state reaction method using elemental powders of Cu, Zn, Sn and Se. Powders were milled in high purity ethanol using zirconia ball with mixed size of 1 and 3 mm at the same proportions for 72 hours milling time. The structural, chemical and mechanical properties of the synthesized CZTSe powders were investigated prior to the deposition process. The CZTSe compound powder, and $500^{\circ}C$ of sintering temperature shows the best properties for PLD target. Results show that the as-deposited CZTSe thin films with the precursors by PLD have a composition near-stoichiometric.

  • PDF

Optimization of ZnO:Al properties for $CuInSe_2$ superstrate thin film solar cell

  • 이은우;박순용;이상환;김우남;정우진;전찬욱
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.36.1-36.1
    • /
    • 2010
  • While the substrate-type solar cells with Cu(In,Ga)Se2 absorbers yield conversion efficiencies of up 20%[1], the highest published efficiency of Cu(In,Ga)Se2 superstrate solar cell is only 12.8% [2]. The commerciallized Cu(In,Ga)Se2 solar cells are made in the substrate configuration having the stacking sequence of substrate (soda lime glass)/back contact (molybdenum)/absorber layer (Cu(In,Ga)Se2)/buffer layer (cadmium sulfide)/window layer (transparent conductive oxide)/anti reflection layer (MgF2) /grid contact. Thus, it is not possible to illuminate the substrate-type cell through the glass substrate. Rather, it is necessary to illuminate from the opposite side which requires an elaborate transparent encapsulation. In contrast to that, the configuration of superstrate solar cell allows the illumination through the glass substrate. This saves the expensive transparent encapsulation. Usually, the high quality Cu(In,Ga)Se2 absorber requires a high deposition temperature over 550C. Therefore, the front contact should be thermally stable in the temperature range to realize a successful superstrate-type solar cell. In this study, it was tried to make a decent superstrate-type solar cell with the thermally stable ZnO:Al layer obtained by adjusting its deposition parameters in magnetron sputtering process. The effect of deposition condition of the layer on the cell performance will be discussed together with hall measurement results and current-voltage characteristics of the cells.

  • PDF

성인 여성의 미량무기질(Fe, Zn, Cu, Mn, Se, Mo 및 Cr) 섭취량 - 분석치와 계산치의 비교 - (Dietary intakes of Fe, Zn, Cu, Mn, Se, Mo, and Cr of Korean adult women - Comparison between the data from analyzed and calculated -)

  • 김경희;임현숙
    • 한국가정과학회지
    • /
    • 제9권3호
    • /
    • pp.69-79
    • /
    • 2006
  • The previous studies on the intake of trace elements performed in Korea were only concerned about major elements like Fe, Zn or Cu. There is little data about the intake of minor elements like Mn, Se, Mo or Cr. And most of the data were obtained by calculation using Food Composition Tables or by analysis using atomic absorption spectrophotometers (AAS). The purpose of this study, therefore, was to evaluate the dietary intake of seven trace elements, Fe, Zn, Cu, Mn, Se, Mo, and Cr of Korean adult wonmen and to compare the data between analyzed using ICP-MS (or ICP-AES) and calculated by the CAN-Pro (or Food Composition Table). A total of nineteen adult women participated voluntarily in this study and collected one-tenth of the foods that they consumed for three consecutive days. Analyzed intake of Fe of the subjects was $6.94{\pm}2.18$ (calculated, $18.87{\pm}4.50$) mg/day, that of Ze was $9.35{\pm}4.95$ (calculated, $8.35{\pm}2.87mg/day$), that of Cu was $1.18{\pm}0.26\;(1.11{\pm}0.32mg/day)$, that of Mn was $3.69{\pm}0.69\;(2.83{\pm}1.68mg/day)$, that of Se was $41.93{\pm}9.28$ (calculated, $27.58{\pm}6.97{\mu}g/day$), that of Mo was $134.0{\pm}49.1{\mu}g/day$, and that of Cr was $136.5{\pm}147.9{\mu}g/day$. The analyzed Fe intake of the subjects did not meet Estimated Average Requirement (EAR) nor Recommended Intakes (RI) for Korean women aged 20-29 years old. However, the analyzed intakes of the other six elements, Zn, Cu, Mn, Se, Mo, and Cr, seemed to meet each of the respective RIs. The analyzed Fe intake was significantly lower than the calculated one, in fact by 2.72 times, however, the analyzed intakes of the other elements, Mn and Se, were significantly higher and those of Zn and Cu were similar than each of the calculated ones. The difference of the data between analyzed and calculated intakes indicates that it is necessary to set up database on trace element contents of foods of the Food Composition Table and the CAN-Pro so as to have accuracy.

  • PDF

HWE 방법에 의한 ZnSe/ZnSe(bulk) 박막 성장 (Growth of ZnSe/ZnSe(bulk) Epilayer by HWE Method)

  • 신영진;정태수;신현길;김택성;정철훈;이훈;신영신
    • 한국진공학회지
    • /
    • 제2권1호
    • /
    • pp.78-84
    • /
    • 1993
  • Hot-Wall Epitaxy(HWE) 방법으로 ZnSe/ZnSe(bulk) 박막을 성장하였다. 이 때 사용되어진 ZnSe 기판은 승화법으로 증발부분의 온도를 $1160^{\circ}C$ 성장부분의 온도를 $1130^{\circ}C$로 하여 약 2주 동안 직경 20mm, 높이 18mm인 원추형의 ZnSe 단결정을 얻었다. 양질의 ZnSe 박막을 얻기 위한 조건은 증발부분의 온도는 $610^{\circ}C$, 기판의 온도는 49$0^{\circ}C$이었다. ZnSe(bulk) 기판위에 성장한 ZnSe 박막의 광발광에서는 강한 D-A pair emission과 Cu 불순물에 의한 녹색과 적색 발광이 관측되었고 SA 발광은 관측되지 않았다.

  • PDF

$Cu_2ZnSnSe_4$ 태양전지의 적용을 위한 최적화 된 CdS 버퍼층 연구 (Optimization of CdS buffer layers for $Cu_2ZnSnSe_4$ thin-film applications)

  • 김지영;정아름;조윌렴
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.400-403
    • /
    • 2012
  • $Cu_2ZnSnSe_4$(CZTSe) is emerged as a promising material for thin-film solar cells because of non-toxic, inexpensive and earth abundant more than $Cu(In,Ga)Se_2$ materials. For fabricating compound semiconductor thin-film solar cells, CdS is widely used for a buffer layer which fabricated by a chemical bath deposition method (CBD). Through the experiment, we controlled deposition temperature and mol ratio of solution conditions to find the proper grain 크기 and exact composition. The optimum CdS layers were characterized in terms of surface morphology by using a scanning electron microscope (SEM) and atomic force microscope (AFM). The optimized CdS layer process was applied on CZTSe thin-films. The thickness of buffer layer related with device performance of solar cells which controlled by deposition time. Local surface potential of CdS/CZTSe thin-films was investigated by Kelvin probe force microscopy (KPFM). From these results, we can deduce local electric properties with different thickness of buffer layer on CZTSe thin-films. Therefore, we investigated the effect of CdS buffer layer thickness on the CZTSe thin-films for decreasing device losses. From this study, we can suggest buffer layer thickness which contributes to efficiencies and device performance of CZTSe thin-film solar cells.

  • PDF

3-5족 적층형과 CuInGa(S,Se)2 및 Cu2ZnSn(S,Se)4 화합물반도체 박막태양전지 (III-V Tandem, CuInGa(S,Se)2, and Cu2ZnSn(S,Se)4 Compound Semiconductor Thin Film Solar Cells)

  • 정연길;박동원;이재광;이재영
    • 공업화학
    • /
    • 제26권5호
    • /
    • pp.526-532
    • /
    • 2015
  • 신 기후변화대응(Post 2020)을 위한 대체에너지의 역할과 더불어 태양전지의 중요성이 높아져 가고 있다. 태양전지의 종류는 크게 재료관점에서 보면 유기물과 무기물 계열로 구분할 수 있지만 대규모 발전역할에서는 현재까지 실리콘과 같이 양산성과 안정성 기반의 무기물 태양전지가 주된 역할을 하고 있다. 특히 최근 몇 년간 화합물반도체 태양전지에 대한 연구는 급속도로 가속화되면서 3-5족 적층형 태양전지, chalcopyrite 계열 $CuInGa(S,Se)_2$ (CIGSSe) 태양전지와 kesterite 계열 $Cu_2ZnSn(S,Se)_4$ (CZTSSe) 태양전지 연구가 대표적으로 주류를 이루어 왔다. 따라서 화합물반도체 태양전지에서 주류를 이루고 있는 3-5족 적층형, CIGSSe 및 CZTSSe 태양전지들의 연구개발동향 및 기술적인 주요내용들에 대해 소개하고자 한다.

18% 효율 Cu(In,Ga)Se2 박막태양전지용 ZnSnO 버퍼층의 원자층 증착법 및 분석 (Characterization of Atomic-Layer Deposited ZnSnO Buffer Layer for 18%- Efficiency Cu(In,Ga)Se2 Solar Cells)

  • 김선철;김승태;안병태
    • Current Photovoltaic Research
    • /
    • 제3권2호
    • /
    • pp.54-60
    • /
    • 2015
  • ZnSnO thin films were deposited by atomic layer deposition (ALD) process using diethyl zinc ($Zn(C_2H_5)_2$) and tetrakis (dimethylamino) tin ($Sn(C_2H_6N)_4$) as metal precursors and water vapor as a reactant. ALD process has several advantages over other deposition methods such as precise thickness control, good conformality, and good uniformity for large area. The composition of ZnSnO thin films was controlled by varying the ratio of ZnO and $SnO_2$ ALD cycles. The ALD ZnSnO film was an amorphous state. The band gap of ZnSnO thin films increased as the Sn content increased. The CIGS solar cell using ZnSnO buffer layer showed about 18% energy conversion efficiency. With such a high efficiency with the ALD ZnSnO buffer and no light soaking effect, AlD ZnSnO buffer mighty be a good candidate to replace Zn(S,O) buffer in CIGSsolar cells.

(Ga,Al)이 도핑된 ZnO를 투명전극으로 가진 Cu(In,Ga)Se2 태양전지에 수분이 미치는 영향 (Effect of Moisture on Cu(In,Ga)Se2 Solar Cell with (Ga,Al) Co-doped ZnO as Window Layer)

  • 양소현;배진아;송유진;전찬욱
    • Current Photovoltaic Research
    • /
    • 제5권4호
    • /
    • pp.135-139
    • /
    • 2017
  • We fabricated two different transparent conducting oxide thin films of ZnO doped with Ga ($Ga_2O_3$ 0.9 wt%) as well as Al ($Al_2O_3$ 2.1 wt%) (GAZO) and ZnO doped only with Al ($Al_2O_3$ 3 wt%) (AZO). It was investigated how it affects the moisture resistance of the transparent electrode. In addition, $Cu(In,Ga)Se_2$ thin film solar cells with two transparent oxides as front electrodes were fabricated, and the correlation between humidity resistance of transparent electrodes and device performance of solar cells was examined. When both transparent electrodes were exposed to high temperature distilled water, they showed a rapid increase in sheet resistance and a decrease in the fill factor of the solar cell. However, AZO showed a drastic decrease in efficiency at the beginning of exposure, while GAZO showed that the deterioration of efficiency occurred over a long period of time and that the long term moisture resistance of GAZO was better.