DOI QR코드

DOI QR Code

III-V Tandem, CuInGa(S,Se)2, and Cu2ZnSn(S,Se)4 Compound Semiconductor Thin Film Solar Cells

3-5족 적층형과 CuInGa(S,Se)2 및 Cu2ZnSn(S,Se)4 화합물반도체 박막태양전지

  • Jeong, Yonkil (Research Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST)) ;
  • Park, Dong-Won (Research Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST)) ;
  • Lee, Jae Kwang (Research Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST)) ;
  • Lee, Jaeyoung (School of Environmental Science and Engineering, GIST)
  • 정연길 (광주과학기술원 차세대에너지연구소) ;
  • 박동원 (광주과학기술원 차세대에너지연구소) ;
  • 이재광 (광주과학기술원 차세대에너지연구소) ;
  • 이재영 (광주과학기술원 환경공학부)
  • Received : 2015.08.11
  • Accepted : 2015.08.25
  • Published : 2015.10.10

Abstract

Solar cells with other alternative energies are being importantly recognized related with post-2020 climate change regime formation. In a point of view of materials, solar cells are classified to organic and inorganic solar cells which can provide a plant-scale electricity. In particular, recent studies about compound semiconductor solar cells, such as III-V tandem solar cells, chalcopyrite-series CIGSSe solar cells, and kesterite-series CZTSSe solar cells were rapidly accelerated. In this report, we introduce a research trend and technical issues for the compound semiconductor solar cells.

신 기후변화대응(Post 2020)을 위한 대체에너지의 역할과 더불어 태양전지의 중요성이 높아져 가고 있다. 태양전지의 종류는 크게 재료관점에서 보면 유기물과 무기물 계열로 구분할 수 있지만 대규모 발전역할에서는 현재까지 실리콘과 같이 양산성과 안정성 기반의 무기물 태양전지가 주된 역할을 하고 있다. 특히 최근 몇 년간 화합물반도체 태양전지에 대한 연구는 급속도로 가속화되면서 3-5족 적층형 태양전지, chalcopyrite 계열 $CuInGa(S,Se)_2$ (CIGSSe) 태양전지와 kesterite 계열 $Cu_2ZnSn(S,Se)_4$ (CZTSSe) 태양전지 연구가 대표적으로 주류를 이루어 왔다. 따라서 화합물반도체 태양전지에서 주류를 이루고 있는 3-5족 적층형, CIGSSe 및 CZTSSe 태양전지들의 연구개발동향 및 기술적인 주요내용들에 대해 소개하고자 한다.

Keywords

References

  1. R. M. Swanson, The Pormise of Concentrators, Prog. Photovoltaics, 8, 93-111 (2000). https://doi.org/10.1002/(SICI)1099-159X(200001/02)8:1<93::AID-PIP303>3.0.CO;2-S
  2. A. Luque and V. Andreev, Concentrator Photovoltaics, Springer, Berlin (2007).
  3. G. Zubi, J. Bernal-Agustin, and G. V. Fracastoro, High concentration photovoltaic systems applying III-V cells, Renew. Sust. Energ. Rev., 13, 2645-2652 (2009). https://doi.org/10.1016/j.rser.2009.07.002
  4. B. Mitchell, G. Peharz, G. Siefer, M. peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, Four-junction spectral beam-splitting photovoltaic receiver with high optical efficiency, Prog. Photovoltaics, 19, 61-72 (2011). https://doi.org/10.1002/pip.988
  5. J. Russell, G. Jones, and J. Hall, A New UVR/IRR Coverglass for Triple Junction Cells, Proceedings of 4th IEEE Photovoltaic Energy Conversion Conf., May 7-12, Waikoloa, USA (2006).
  6. B.-C. Chung, G. F. Virshup, S. Hikido, and N. R. Kaminar, 27.6% efficiency (1 sun, air mass 1.5) monolithic $Al_{0.37}Ga_{0.63}As/GaAs$ two junction cascade solar cell with prismatic cover glass, Appl. Phys. Lett., 55, 1741-1743 (1989). https://doi.org/10.1063/1.102204
  7. O. Korech, J. M. Gordon, E. A. Katz, D. Feuermann, and N. Eisenberg, Dielectric microconcentrators for efficiency enhancement in concentrator solar cells, Opt. Lett., 32, 2789-2791 (2007). https://doi.org/10.1364/OL.32.002789
  8. A. Boca, K. M. Edmondson, and R. R. King, Prismatic covers for boosting the efficiency of high-concentration PV systems, Proceedings of 34th IEEE Photovoltaic Specialists Conf., June 7-12, Philadelphia, USA (2009).
  9. A. Cornfeld and T. Varghese, Solar cell with textured coverglass, US Patent 0017285 A1 (2011).
  10. E. S. Fairbanks, Concentrating coverglass for photovoltaic cells, US Patent 5,959,787 (1999).
  11. C.-H. Sun, P. Jiang, and B. Jiang, Broadband moth-eye antireflection coatings on silicon, Appl. Phys. Lett., 92, 061112 (2008). https://doi.org/10.1063/1.2870080
  12. N. Yamada, O. N. Kim, T. Tokimitsu, Y. Nakai, and H. Masuda, Optimization of anti-reflection moth-eye structures foruse in crystalline silicon solar cells, Prog. Photovoltaics, 19, 134-140 (2010).
  13. C. E. Valdivia, S. Chow, S. Fafard, O. Theriault, M. Yandt, J. F. Wheeldon, A. J. SpringThorpe, B. Rioux, D. McMeekin, D. Masson, B. Riel, V. Aimez, R. Ares, J. Cook, T. J. Hall, F. Shepherd, and K. Hinzer, Measurement of high efficiency 1 $cm^2$ AlGaInP/InGaAs/Ge solar cells with embedded InAs quantum dots at up to 1000 suns continuous concentration, Proceedings of 35th IEEE Photovoltaic Specialists Conf., June 20-25, Honolulu, USA (2010).
  14. G. S. Kinsey, P. Herbert, K. E. Barbour, D. D. Krut, H. L. Cotal, and R. A. Sherif, Concentrator multijunction solar cell characteristics under variable intensity and temperature, Prog. Photovoltaics, 16, 503-508 (2008). https://doi.org/10.1002/pip.834
  15. www.nrel.gov/ncpv
  16. W. Nishikawa, S. Home, and J. Melia, LCOE for concentrating photovoltaics (CPV), Proceedings of International Conference on Solar Concentrators for the Generation of Electricity, November 16-19, Palm Desert, USA (2008).
  17. A. Chiril, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, Potassium-induced surface modification of $Cu(In,Ga)Se_2$ thin films for high-efficiency solar cells, Nat. Mater., 12, 1107-1111 (2013). https://doi.org/10.1038/nmat3789
  18. A. Chirila, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger, and A. N. Tiwari, Highly efficient $Cu(In,Ga)Se_2$ solar cells grown on flexible polymer films, Nat. Mater., 10, 857-861 (2011). https://doi.org/10.1038/nmat3122
  19. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, New world record efficiency for $Cu(In,Ga)Se_2$ thin-film solar cells beyond 20%, Prog. Photovoltaics, 19, 894-897 (2011). https://doi.org/10.1002/pip.1078
  20. A. A. Rockett, Current status and opportunities in chalcopyrite solar cells, Curr. Opin. Solid State Mat. Sci., 14, 143-148 (2010). https://doi.org/10.1016/j.cossms.2010.08.001
  21. I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, 19.9%-efficient $ZnO/CdS/CuInGaSe_2$ solar cell with 81.2% fill factor, Prog. Photovoltaics, 16, 235-239 (2008). https://doi.org/10.1002/pip.822
  22. K. Matunaga, T. Komaru, Y. Nakayama, T. Kume, and Y. Suzuki, Mass-production technology for CIGS modules, Sol. Energy Mater. Sol. Cells, 93, 1134-1138 (2009). https://doi.org/10.1016/j.solmat.2009.02.015
  23. K. Kushiya, Key near-term R&D issues for continuous improvement in CIS-based thin-film PV modules, Sol. Energy Mater. Sol. Cells, 93, 1037-1041 (2009). https://doi.org/10.1016/j.solmat.2008.11.063
  24. H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W. S. Maw, T. Fukano, T. Ito, and T. Motohiro, Enhanced Conversion Efficiencies of $Cu_2ZnSnS_4$-Based Thin Film Solar Cells by Using Preferential Etching Technique, Appl. Phys. Express, 1, 041201 (2008). https://doi.org/10.1143/APEX.1.041201
  25. H. Katagiri, K. Jimbo, W. S. Maw, K. Oishi, M. Yamazaki, H. Araki, and A. Takeuchi, Development of CZTS-based thin film solar cells, Thin Solid Films, 517, 2455-2460 (2009). https://doi.org/10.1016/j.tsf.2008.11.002
  26. A. Ennaoui, M. Lux-Steiner, A. Weber, D. Abou-Ras, I. Kotschau, H.-W. Schock, R. Schurr, A. Holzing, S. Jost, R. Hock, T. Vob, J. Schulze, and A. Kirbs, $Cu_2ZnSnS_4$ thin film solar cells from electroplated precursors: Novel low-cost perspective, Thin Solid Films, 517, 2511-2514 (2009). https://doi.org/10.1016/j.tsf.2008.11.061
  27. K. Wang, O. Gunawan, T. Todorov, B. Shin, S. J. Chey, N. A. Bojarczuk, D. Mitzi, and S. Guha, Thermally evaporated $Cu_2ZnSnS_4$ solar cells, Appl. Phys. Lett., 97, 143508 (2010). https://doi.org/10.1063/1.3499284
  28. K. Ramasamy, M. A. Malik, and P. O'Brien, Routes to copper zinc tin sulfide $Cu_2ZnSnS_4$ a potential material for solar cells, Chem. Commun., 48, 5703-5714 (2012). https://doi.org/10.1039/c2cc30792h
  29. I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W.-C. Hsu, A. Goodrich, and R. Noufi, Co-evaporated $Cu_2ZnSnSe_4$ films and devices, Sol. Energy Mater. Sol. Cells, 101, 154-159 (2012). https://doi.org/10.1016/j.solmat.2012.01.008
  30. J. J. Scragg, Copper Zinc Tin Sulfide Thin Films for Photovoltaic-Sysnthesis and Characterization by Electrochemical Methods, Springer-Verlag Berlin Heidelberg, Germany (2007).
  31. K. Ito, Copper Zinc Tin Sulfide-Based Thin Film Solar Cells, John Wiley & Sons, Chichester, UK (2015).
  32. M. Jiang, Y. Li, R. Dhakal, P. Thapaliya, M. Mastro, J. D. Caldwell, F. Kub, and X. Yan, $Cu_2ZnSnS_4$ polycrystalline thin films with large densely packed grains prepared by sol-gel method, J. Photonics Energy, 1, 019501 (2011). https://doi.org/10.1117/1.3628450
  33. H. Deligianni, S. Ahmed, and L. T. Romankiw, The Next Frontier: Electrodeposition for Solar Cell Fabrication, Interface, 20, 47-53 (2011).
  34. S. Ahmed, K. B. Reuter, O. Gunawan, L. Guo, L. T. Romankiw, and H. Deligianni, A High Efficiency Electrodeposited $Cu_2ZnSnS_4$ Solar Cell, Adv. Energy Mater., 2, 253-259 (2012). https://doi.org/10.1002/aenm.201100526
  35. L. Guo, Y. Zhu, O. Gunawan, T. Gokmen, V. Deline, S. Ahmed, L. T. Romankiw, and H. Deligianni, Electrodeposited $Cu_2ZnSnSe_4$ thin film solar cell with 7% power conversion efficiency, Prog. Photovoltaics, 22, 58-68 (2014). https://doi.org/10.1002/pip.2332
  36. X. Lu, Z. Zhuang, Q. Peng, and Y. Li, Wurtzite $Cu_2ZnSnS_4$ nanocrystals: A novel quaternary semiconductor, Chem. Commun., 47, 3141-3143 (2011). https://doi.org/10.1039/c0cc05064d
  37. S. M. Camara, L. Wang, and X. Zhang, Easy hydrothermal preparation of $Cu_2ZnSnS_4$ (CZTS) nanoparticles for solar cell application, Nanotechnology, 24, 495401 (2013). https://doi.org/10.1088/0957-4484/24/49/495401
  38. K. Ankur, Synthesis And Characterization of Copper Zinc Tin Sulfide Nanoparticles and Thin Films, PhD Dissertation, University of Minnesota, Minnesota, USA (2012).
  39. X. Lin, J. Kavalakkatt, K. Kornhuber, S. Levcenko, M. Ch. Lux-Steiner, and A. Ennaoui, Structural and optical properties of $Cu_2ZnSnS_4$ thin film absorbers from ZnS and $Cu_3SnS_4$ nanoparticle precursors, Thin Solid Films, 535, 10-13 (2013). https://doi.org/10.1016/j.tsf.2012.10.034
  40. W. Guter, J. S. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Olivia, A. W. Bett, and F. Dimroth, Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight, Appl. Phys, Lett., 94, 223504 (2009). https://doi.org/10.1063/1.3148341
  41. Y. Jeong, C.-W. Kim, D.-W. Park, S. C. Jung, J. Lee, and H.-S. Shim, Field modulation in Na-incorporated $Cu(In,Ga)Se_2$ (CIGS) polycrystalline films influenced by alloy-hardening and pair-annihilation probabilities, Nanoscale Res. Lett., 6, 581 (2011). https://doi.org/10.1186/1556-276X-6-581
  42. S. S. Hegedus and W. N. Shafarman, Thin-film solar cells: Device measurements and analysis, Prog. Photovoltaics, 12, 155-176 (2004). https://doi.org/10.1002/pip.518
  43. T. K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, and D. B. Mitzi, Beyond 11% Efficiency: Characteristics of State-of-the-Art $Cu_2ZnSn(S,Se)_4$ Solar Cells, Adv. Energy Mater., 3, 34-38 (2013). https://doi.org/10.1002/aenm.201200348
  44. C. M. Fella, Y. E. Romanyuk, and A. N. Tiwari, Technological status of $Cu_2ZnSn(S,Se)_4$ thin film solar cells, Sol. Energy Mater. Sol. Cells, 119, 276-277 (2013). https://doi.org/10.1016/j.solmat.2013.08.027