References
- R. M. Swanson, The Pormise of Concentrators, Prog. Photovoltaics, 8, 93-111 (2000). https://doi.org/10.1002/(SICI)1099-159X(200001/02)8:1<93::AID-PIP303>3.0.CO;2-S
- A. Luque and V. Andreev, Concentrator Photovoltaics, Springer, Berlin (2007).
- G. Zubi, J. Bernal-Agustin, and G. V. Fracastoro, High concentration photovoltaic systems applying III-V cells, Renew. Sust. Energ. Rev., 13, 2645-2652 (2009). https://doi.org/10.1016/j.rser.2009.07.002
- B. Mitchell, G. Peharz, G. Siefer, M. peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, Four-junction spectral beam-splitting photovoltaic receiver with high optical efficiency, Prog. Photovoltaics, 19, 61-72 (2011). https://doi.org/10.1002/pip.988
- J. Russell, G. Jones, and J. Hall, A New UVR/IRR Coverglass for Triple Junction Cells, Proceedings of 4th IEEE Photovoltaic Energy Conversion Conf., May 7-12, Waikoloa, USA (2006).
-
B.-C. Chung, G. F. Virshup, S. Hikido, and N. R. Kaminar, 27.6% efficiency (1 sun, air mass 1.5) monolithic
$Al_{0.37}Ga_{0.63}As/GaAs$ two junction cascade solar cell with prismatic cover glass, Appl. Phys. Lett., 55, 1741-1743 (1989). https://doi.org/10.1063/1.102204 - O. Korech, J. M. Gordon, E. A. Katz, D. Feuermann, and N. Eisenberg, Dielectric microconcentrators for efficiency enhancement in concentrator solar cells, Opt. Lett., 32, 2789-2791 (2007). https://doi.org/10.1364/OL.32.002789
- A. Boca, K. M. Edmondson, and R. R. King, Prismatic covers for boosting the efficiency of high-concentration PV systems, Proceedings of 34th IEEE Photovoltaic Specialists Conf., June 7-12, Philadelphia, USA (2009).
- A. Cornfeld and T. Varghese, Solar cell with textured coverglass, US Patent 0017285 A1 (2011).
- E. S. Fairbanks, Concentrating coverglass for photovoltaic cells, US Patent 5,959,787 (1999).
- C.-H. Sun, P. Jiang, and B. Jiang, Broadband moth-eye antireflection coatings on silicon, Appl. Phys. Lett., 92, 061112 (2008). https://doi.org/10.1063/1.2870080
- N. Yamada, O. N. Kim, T. Tokimitsu, Y. Nakai, and H. Masuda, Optimization of anti-reflection moth-eye structures foruse in crystalline silicon solar cells, Prog. Photovoltaics, 19, 134-140 (2010).
-
C. E. Valdivia, S. Chow, S. Fafard, O. Theriault, M. Yandt, J. F. Wheeldon, A. J. SpringThorpe, B. Rioux, D. McMeekin, D. Masson, B. Riel, V. Aimez, R. Ares, J. Cook, T. J. Hall, F. Shepherd, and K. Hinzer, Measurement of high efficiency 1
$cm^2$ AlGaInP/InGaAs/Ge solar cells with embedded InAs quantum dots at up to 1000 suns continuous concentration, Proceedings of 35th IEEE Photovoltaic Specialists Conf., June 20-25, Honolulu, USA (2010). - G. S. Kinsey, P. Herbert, K. E. Barbour, D. D. Krut, H. L. Cotal, and R. A. Sherif, Concentrator multijunction solar cell characteristics under variable intensity and temperature, Prog. Photovoltaics, 16, 503-508 (2008). https://doi.org/10.1002/pip.834
- www.nrel.gov/ncpv
- W. Nishikawa, S. Home, and J. Melia, LCOE for concentrating photovoltaics (CPV), Proceedings of International Conference on Solar Concentrators for the Generation of Electricity, November 16-19, Palm Desert, USA (2008).
-
A. Chiril, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, Potassium-induced surface modification of
$Cu(In,Ga)Se_2$ thin films for high-efficiency solar cells, Nat. Mater., 12, 1107-1111 (2013). https://doi.org/10.1038/nmat3789 -
A. Chirila, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger, and A. N. Tiwari, Highly efficient
$Cu(In,Ga)Se_2$ solar cells grown on flexible polymer films, Nat. Mater., 10, 857-861 (2011). https://doi.org/10.1038/nmat3122 -
P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, New world record efficiency for
$Cu(In,Ga)Se_2$ thin-film solar cells beyond 20%, Prog. Photovoltaics, 19, 894-897 (2011). https://doi.org/10.1002/pip.1078 - A. A. Rockett, Current status and opportunities in chalcopyrite solar cells, Curr. Opin. Solid State Mat. Sci., 14, 143-148 (2010). https://doi.org/10.1016/j.cossms.2010.08.001
-
I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, 19.9%-efficient
$ZnO/CdS/CuInGaSe_2$ solar cell with 81.2% fill factor, Prog. Photovoltaics, 16, 235-239 (2008). https://doi.org/10.1002/pip.822 - K. Matunaga, T. Komaru, Y. Nakayama, T. Kume, and Y. Suzuki, Mass-production technology for CIGS modules, Sol. Energy Mater. Sol. Cells, 93, 1134-1138 (2009). https://doi.org/10.1016/j.solmat.2009.02.015
- K. Kushiya, Key near-term R&D issues for continuous improvement in CIS-based thin-film PV modules, Sol. Energy Mater. Sol. Cells, 93, 1037-1041 (2009). https://doi.org/10.1016/j.solmat.2008.11.063
-
H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W. S. Maw, T. Fukano, T. Ito, and T. Motohiro, Enhanced Conversion Efficiencies of
$Cu_2ZnSnS_4$ -Based Thin Film Solar Cells by Using Preferential Etching Technique, Appl. Phys. Express, 1, 041201 (2008). https://doi.org/10.1143/APEX.1.041201 - H. Katagiri, K. Jimbo, W. S. Maw, K. Oishi, M. Yamazaki, H. Araki, and A. Takeuchi, Development of CZTS-based thin film solar cells, Thin Solid Films, 517, 2455-2460 (2009). https://doi.org/10.1016/j.tsf.2008.11.002
-
A. Ennaoui, M. Lux-Steiner, A. Weber, D. Abou-Ras, I. Kotschau, H.-W. Schock, R. Schurr, A. Holzing, S. Jost, R. Hock, T. Vob, J. Schulze, and A. Kirbs,
$Cu_2ZnSnS_4$ thin film solar cells from electroplated precursors: Novel low-cost perspective, Thin Solid Films, 517, 2511-2514 (2009). https://doi.org/10.1016/j.tsf.2008.11.061 -
K. Wang, O. Gunawan, T. Todorov, B. Shin, S. J. Chey, N. A. Bojarczuk, D. Mitzi, and S. Guha, Thermally evaporated
$Cu_2ZnSnS_4$ solar cells, Appl. Phys. Lett., 97, 143508 (2010). https://doi.org/10.1063/1.3499284 -
K. Ramasamy, M. A. Malik, and P. O'Brien, Routes to copper zinc tin sulfide
$Cu_2ZnSnS_4$ a potential material for solar cells, Chem. Commun., 48, 5703-5714 (2012). https://doi.org/10.1039/c2cc30792h -
I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W.-C. Hsu, A. Goodrich, and R. Noufi, Co-evaporated
$Cu_2ZnSnSe_4$ films and devices, Sol. Energy Mater. Sol. Cells, 101, 154-159 (2012). https://doi.org/10.1016/j.solmat.2012.01.008 - J. J. Scragg, Copper Zinc Tin Sulfide Thin Films for Photovoltaic-Sysnthesis and Characterization by Electrochemical Methods, Springer-Verlag Berlin Heidelberg, Germany (2007).
- K. Ito, Copper Zinc Tin Sulfide-Based Thin Film Solar Cells, John Wiley & Sons, Chichester, UK (2015).
-
M. Jiang, Y. Li, R. Dhakal, P. Thapaliya, M. Mastro, J. D. Caldwell, F. Kub, and X. Yan,
$Cu_2ZnSnS_4$ polycrystalline thin films with large densely packed grains prepared by sol-gel method, J. Photonics Energy, 1, 019501 (2011). https://doi.org/10.1117/1.3628450 - H. Deligianni, S. Ahmed, and L. T. Romankiw, The Next Frontier: Electrodeposition for Solar Cell Fabrication, Interface, 20, 47-53 (2011).
-
S. Ahmed, K. B. Reuter, O. Gunawan, L. Guo, L. T. Romankiw, and H. Deligianni, A High Efficiency Electrodeposited
$Cu_2ZnSnS_4$ Solar Cell, Adv. Energy Mater., 2, 253-259 (2012). https://doi.org/10.1002/aenm.201100526 -
L. Guo, Y. Zhu, O. Gunawan, T. Gokmen, V. Deline, S. Ahmed, L. T. Romankiw, and H. Deligianni, Electrodeposited
$Cu_2ZnSnSe_4$ thin film solar cell with 7% power conversion efficiency, Prog. Photovoltaics, 22, 58-68 (2014). https://doi.org/10.1002/pip.2332 -
X. Lu, Z. Zhuang, Q. Peng, and Y. Li, Wurtzite
$Cu_2ZnSnS_4$ nanocrystals: A novel quaternary semiconductor, Chem. Commun., 47, 3141-3143 (2011). https://doi.org/10.1039/c0cc05064d -
S. M. Camara, L. Wang, and X. Zhang, Easy hydrothermal preparation of
$Cu_2ZnSnS_4$ (CZTS) nanoparticles for solar cell application, Nanotechnology, 24, 495401 (2013). https://doi.org/10.1088/0957-4484/24/49/495401 - K. Ankur, Synthesis And Characterization of Copper Zinc Tin Sulfide Nanoparticles and Thin Films, PhD Dissertation, University of Minnesota, Minnesota, USA (2012).
-
X. Lin, J. Kavalakkatt, K. Kornhuber, S. Levcenko, M. Ch. Lux-Steiner, and A. Ennaoui, Structural and optical properties of
$Cu_2ZnSnS_4$ thin film absorbers from ZnS and$Cu_3SnS_4$ nanoparticle precursors, Thin Solid Films, 535, 10-13 (2013). https://doi.org/10.1016/j.tsf.2012.10.034 - W. Guter, J. S. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Olivia, A. W. Bett, and F. Dimroth, Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight, Appl. Phys, Lett., 94, 223504 (2009). https://doi.org/10.1063/1.3148341
-
Y. Jeong, C.-W. Kim, D.-W. Park, S. C. Jung, J. Lee, and H.-S. Shim, Field modulation in Na-incorporated
$Cu(In,Ga)Se_2$ (CIGS) polycrystalline films influenced by alloy-hardening and pair-annihilation probabilities, Nanoscale Res. Lett., 6, 581 (2011). https://doi.org/10.1186/1556-276X-6-581 - S. S. Hegedus and W. N. Shafarman, Thin-film solar cells: Device measurements and analysis, Prog. Photovoltaics, 12, 155-176 (2004). https://doi.org/10.1002/pip.518
-
T. K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, and D. B. Mitzi, Beyond 11% Efficiency: Characteristics of State-of-the-Art
$Cu_2ZnSn(S,Se)_4$ Solar Cells, Adv. Energy Mater., 3, 34-38 (2013). https://doi.org/10.1002/aenm.201200348 -
C. M. Fella, Y. E. Romanyuk, and A. N. Tiwari, Technological status of
$Cu_2ZnSn(S,Se)_4$ thin film solar cells, Sol. Energy Mater. Sol. Cells, 119, 276-277 (2013). https://doi.org/10.1016/j.solmat.2013.08.027