DOI QR코드

DOI QR Code

Characterization of an In2Se3 Passivation Layer for CIGS Solar Cells with Cd-free Zn-containing Atomic-layer-deposited Buffers

  • Kim, Suncheul (Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Lee, Ho Jin (Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Ahn, Byung Tae (Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Shin, Dong Hyeop (Photovoltaic Team, Korea Institute of Energy Research) ;
  • Kim, Kihwan (Photovoltaic Team, Korea Institute of Energy Research) ;
  • Yun, Jae Ho (Photovoltaic Team, Korea Institute of Energy Research)
  • Received : 2021.07.26
  • Accepted : 2021.09.09
  • Published : 2021.09.30

Abstract

Even though above 22% efficiencies have been reported in Cd-free Cu(In,Ga)Se2 (CIGS) solar cell with Zn-containing buffers, the efficiencies with Zn-containing buffers, in general, are well below 20%. One of the reasons is Zn diffusion from the Zn-containing buffer layer to CIGS film during buffer growth. To avoid the degradation, it is necessary to prevent the diffusion of Zn atoms from Zn-containing buffer to CIGS film. For the purpose, we characterized an In2Se3 film as a possible diffusion barrier layer because In2Se3 has no Zn component. It was found that an In2Se3 layer grown at 300℃ was very effective in preventing Zn diffusion from a Zn-containing buffer. Also, the In2Se3 had a large potential barrier in the valence band at the In2Se3/CIGS interface. Therefore, In2Se3 passivation has the potential to achieve a super-high efficiency in CIGS solar cells that employ Cd-free ALD processed buffers containing Zn.

Keywords

Acknowledgement

This work was financially supported by the Technology Development Program to Solve Climate Change of the National Research Foundation of Korea (No. 2016M1A2A2936757) and by the Korea Institute of Energy Technology Evaluation and Planning (No.20163030013690).

References

  1. M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, Cd-Free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%, IEEE J. Photovoltaics, 9, 1863-1867 (2019). https://doi.org/10.1109/JPHOTOV.2019.2937218
  2. J. Chantana, Y. Kawano, T. Nishimura, Y. Kimoto, T. Kato, H. Sugimoto, T. Minemoto, 22%-efficient Cd-free Cu(In,Ga)(S,Se)2 solar cell by all-dry process using Zn0.8Mg0.2O and Zn0.9Mg0.1,/sub>O:B as buffer and transparent conductive oxide layers, Progress in Photovoltaics: Research and Applications, Appl., 28, 79-89 (2020). https://doi.org/10.1002/pip.3210
  3. J. Chantana, Y. Kawano, T. Njshmura, Y. Kimoto, T. Kato, H. Sugimoto, T. Minemoto, Transparent electrode and buffer layer combination for reducing carrier recombination and optical loss realizing over a 22%-efficient Cd-free alkaline-treated Cu(In,Ga)(S,Se)2 solar cell by the all-dry process, ACS Applied Materials and Interfaces, 2, 22298-22307 (2020).
  4. S. Sinha, D. K. Nandi, P. S. Pawar, S. H. Kim, J. Heo, A review on atomic layer deposited buffer layers for Cu(In,Ga)Se2 (CIGS) thin film solar cells: Past, present, and future, Solar Energy, 290, 515-537 (2020).
  5. W. Witte, D. Hariskos, A. Eicke, R. Menner, O. Kiowski, M. Powalla, Impact of annealing on Cu(In,Ga)Se2 solar cells with Zn(O,S)/(Zn,Mg)O buffers, Thin Solid Films, 535, 180-183 (2013). https://doi.org/10.1016/j.tsf.2012.10.038
  6. J. Lindahl, U. Zimmermann, P. Szaniawski, T. Torndahl, A. Hultqvist, P. Salome, C. Platzer-Bjorkman, M. Edoff, Inline Cu(In,Ga)Se2 co-evaporation for high-efficiency solar cells and modules, IEEE J. Photovoltaics, 3, 1100-1105 (2013). https://doi.org/10.1109/JPHOTOV.2013.2256232
  7. K. H. Kim, K. H. Yoon, J. H. Yun, B. T. Ahn, Effects of Se flux on the microstructure of Cu(In,Ga)Se2 thin film deposited by a three-stage co-evaporation process. Electrochem. Solid State Letters, 9, A382-A385 (2006). https://doi.org/10.1149/1.2208011
  8. S. Nishiwaki, T. Satoh, Y. Hashimoto, S. I. Shimakawa, S, Hayashi, T. Negami, T. Wada, Preparation of Zn doped Cu(In,Ga)Se2 thin films by physical vapor deposition for solar cells, Solar Energy Materials and Solar Cells, 77, 359-368 (2003). https://doi.org/10.1016/S0927-0248(02)00355-0
  9. M. Sugiyama, A. Kinoshita, A. Miyama, H. Nakanishi, S. F. Chichibu, Formation of Zn-doped CuInSe2 films by thermal annealing using dimethylzinc, J. Crystal Growth, 310, 794-797 (2008). https://doi.org/10.1016/j.jcrysgro.2007.11.172
  10. C. S. Lee, S. Kim, E. A. Al-Ammar, H. S. Kwon, B. T. Ahn, Effects of Zn diffusion from (Zn,Mg)O buffer to CIGS film on the performance of Cd-free Cu(In,Ga)Se solar cells, ECS J. Solid State Science and Technology, 3, Q99-Q103 (2014). https://doi.org/10.1149/2.003406jss
  11. E. Handick, P. Reinhard. J. H. Alsmeier, Leonard Kohler, Fabian Pianezzi, S. Krause, M. Gorgoi, E. Ikenaga, N. Koch, R. G. Wilks, S. Buecheler, A. N. Tiwari, M. Bar, Potassium postdeposition treatment-induced band gap widening at Cu(In,Ga)Se2 surfaces - reason for performance leap?, ACS Applied Materials and Interfaces, 7, 27414-27420 (2015). https://doi.org/10.1021/acsami.5b09231
  12. P. Reinhard, B. Bissig, F. Pianezzi, E. Avancini, H. Hagendorfer, D. Keller, P. Fuchs, M. Dobeli, C. Vigo, P. Crivelli, S. Nishiwaki, S. Buecheler, A. N. Tiwari, Features of KF and NaF postdeposition treatments of Cu(In,Ga)Se2 absorbers for high efficiency thin film solar cells, Chemistry of Materials, 27, 5755-5764 (2015). https://doi.org/10.1021/acs.chemmater.5b02335
  13. Y. M. Shin, C. S. Lee, D. H. Shin, H. S. kwon, B. G. Park, B. T. Ahn, Surface modification of CIGS film by annealing and its effect on the band structure and photovoltaic properties of CIGS solar cells, Current Applied Physics. 15, 18-24 (2015). https://doi.org/10.1016/j.cap.2014.09.023
  14. C. H. Ho, Y. C. Chen, Thickness-tunable band gap modulation in γ-In2Se3, RSC Advances, 3, 24896-24899 (2013). https://doi.org/10.1039/c3ra44624g
  15. D. Y. Lyu, T. Y. Chang, S. M. Lan, T. N. Yang, C. C. Chiang, C. L. Chen, H. P. Chiang, Structural and optical characterization of single-phase γ-In2Se3 films with room-temperature photoluminescence, J. Alloys and Compounds, 499,104-107 (2010). https://doi.org/10.1016/j.jallcom.2010.03.130
  16. D. Y. Lee, J. H. Yun, K. H. Yoon, B. T. Ahn, Characterization of Cu-poor surface on Cu-rich CuInSe2 film prepared by evaporating binary selenide compounds and its effect on solar efficiency, Thin Solid Films, 410, 171-176 (2002). https://doi.org/10.1016/S0040-6090(02)00249-3
  17. S. C. Kim, Y. M. Ko, S. T. Kim, Y. W. Choi, J. K. Park, B. T. Ahn, Reduction of point defects and Cu surface composition in Cu(In,Ga)Se2 film by Se annealing with a NaF overlayer at intermediate temperatures, Current Applied Physics, 17, 820-828 (2017). https://doi.org/10.1016/j.cap.2017.03.009
  18. S. T. Kim, L. Larina, J. H. Yun, B. Shin, B. T. Ahn, Surface passivation and point defect control in Cu(In,Ga)Se2 films with a Na2S post deposition treatment for higher than 19% CIGS cell performance, Sustainable Energy Fuels, 3, 709 (2019). https://doi.org/10.1039/C8SE00570B
  19. S. C. Kim, S. T. Kim, B. T. Ahn, Characterization of atomic-layer deposited ZnSnO buffer layer for 18%-efficiency Cu(In,Ga)Se2 solar cells, Current Photovoltaic Research, 3, 54-60 (2015).
  20. A. Loubat, S. Bechu, M.Bouttemy, J. Vigneron, D. Lincot, J. Guillemoles, A. Etcheberry, Cu depletion on Cu(In,Ga)Se2 surfaces investigated by chemical engineering: An x-ray photoelectron spectroscopy approach, Citation: J. Vacuum Science & Technology A, 37, 041201 (2019).
  21. C. H. De Groot, J. S. Moodera, Growth and characterization of a novel In2Se3 structure, J. Applied Physics, 89, 4336-4340 (2001). https://doi.org/10.1063/1.1355287
  22. J. Weszka, Ph. Danier, A. Burian, A. M. Burian, A. T. Nguyen, Raman scattering in In2Se3 and InSe2 amorphous films, J. Non-Crystalline Solids, 265, 98-104 (2000). https://doi.org/10.1016/S0022-3093(99)00710-3
  23. J. Krustok, H. Collan, K. Hjelt, Does the low-temperature Arrhenius plot of the photoluminescence intensity in CdTe point towards an erroneous activation energy?, J. Applied Physics., 81, 1442-1445 (1997). https://doi.org/10.1063/1.363903
  24. T. Schmidt, K. Lischka, W. Zulehner, Excitation-power dependence of the near-band-edge photoluminescence of semiconductors, Physical Review B, 45, 8989-8994 (1992). https://doi.org/10.1103/PhysRevB.45.8989
  25. T. Unold and L. Gutay, Photoluminescence Analysis of Thin-Film Solar Cells, Advanced Characterization Techniques for Thin Film Solar Cells, 151-175 (2011).
  26. T. Ohtsuka, T. Okamoto, A. Yamada, M. Konagai, Photoluminescence study of γ-In2Se3 epitaxial films grown by molecular beam epitaxy, J. Luminescence, 87-89, 293-295 (2000). https://doi.org/10.1016/S0022-2313(99)00319-1
  27. W. Witte, R. Kniese, M. Powalla, Raman investigations of Cu(In,Ga)Se2 thin films with various copper contents, Thin Solid Films, 517, 867-869 (2008). https://doi.org/10.1016/j.tsf.2008.07.011
  28. R. Caballero, C. A. Kaufmann, V. Efimova, R. Rissom, V. Hoffmann, H. W. Schock, Investigation of Cu(In,Ga)Se2 thin-film formation during the multi-stage co-evaporation process, Progress in Photovoltaics: Research and Applications, 21, 30-46 (2013). https://doi.org/10.1002/pip.1233